Recent occurrence of pharmaceuticals in freshwater, emerging treatment technologies, and future considerations: A review

IF 8.1 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES
Ojima Zechariah Wada , David Bamidele Olawade
{"title":"Recent occurrence of pharmaceuticals in freshwater, emerging treatment technologies, and future considerations: A review","authors":"Ojima Zechariah Wada ,&nbsp;David Bamidele Olawade","doi":"10.1016/j.chemosphere.2025.144153","DOIUrl":null,"url":null,"abstract":"<div><div>Pharmaceuticals represent an emerging class of pollutants raising significant environmental health concerns, with their presence in freshwater systems linked to adverse aquatic ecosystem impacts and acceleration of antibiotic resistance development. This narrative review examines recent (2019–2024) pharmaceutical occurrences in freshwater globally, analyzes contamination pathways, evaluates compound-specific degradability, and assesses treatment technologies.</div><div>Analysis revealed significant pharmaceutical contamination in freshwater sources across the six major continents, primarily entering through wastewater treatment plant effluents, groundwater recharge processes, and inadequate sanitation infrastructure/septic systems. Stark geographical disparities were observed, with regions lacking centralized treatment infrastructure showing multiple-fold higher concentrations, particularly in Africa and Latin America (exemplified by amoxicillin levels reaching 272,156 ng/L in Lagos, Nigeria). Pharmaceutical profiles reflected local healthcare patterns, with antimalarials and antiretrovirals prevalent in endemic regions. Globally prevalent compounds included caffeine, acetaminophen, ibuprofen, carbamazepine, sulfamethoxazole, amoxicillin, and diclofenac. While some compounds like caffeine showed relatively good removal in conventional treatment systems, their high usage rates overwhelmed treatment capacity. Others, particularly carbamazepine, demonstrated high recalcitrance to conventional treatment methods. Advanced oxidation processes and membrane technologies showed high removal efficiencies, while biochar-based systems emerged as promising, cost-effective alternatives using locally available resources.</div><div>The findings underscore the need for both centralized and decentralized treatment approaches. Point-of-use technologies emerge as crucial immediate interventions for regions with inadequate infrastructure, while advanced technologies show promise for large-scale applications. The review emphasizes that municipalities should conduct systematic screening to identify locally prevalent pharmaceuticals, as treatment requirements vary significantly with local usage patterns, making a one-size-fits-all approach ineffective.</div></div>","PeriodicalId":276,"journal":{"name":"Chemosphere","volume":"374 ","pages":"Article 144153"},"PeriodicalIF":8.1000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemosphere","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045653525000955","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Pharmaceuticals represent an emerging class of pollutants raising significant environmental health concerns, with their presence in freshwater systems linked to adverse aquatic ecosystem impacts and acceleration of antibiotic resistance development. This narrative review examines recent (2019–2024) pharmaceutical occurrences in freshwater globally, analyzes contamination pathways, evaluates compound-specific degradability, and assesses treatment technologies.
Analysis revealed significant pharmaceutical contamination in freshwater sources across the six major continents, primarily entering through wastewater treatment plant effluents, groundwater recharge processes, and inadequate sanitation infrastructure/septic systems. Stark geographical disparities were observed, with regions lacking centralized treatment infrastructure showing multiple-fold higher concentrations, particularly in Africa and Latin America (exemplified by amoxicillin levels reaching 272,156 ng/L in Lagos, Nigeria). Pharmaceutical profiles reflected local healthcare patterns, with antimalarials and antiretrovirals prevalent in endemic regions. Globally prevalent compounds included caffeine, acetaminophen, ibuprofen, carbamazepine, sulfamethoxazole, amoxicillin, and diclofenac. While some compounds like caffeine showed relatively good removal in conventional treatment systems, their high usage rates overwhelmed treatment capacity. Others, particularly carbamazepine, demonstrated high recalcitrance to conventional treatment methods. Advanced oxidation processes and membrane technologies showed high removal efficiencies, while biochar-based systems emerged as promising, cost-effective alternatives using locally available resources.
The findings underscore the need for both centralized and decentralized treatment approaches. Point-of-use technologies emerge as crucial immediate interventions for regions with inadequate infrastructure, while advanced technologies show promise for large-scale applications. The review emphasizes that municipalities should conduct systematic screening to identify locally prevalent pharmaceuticals, as treatment requirements vary significantly with local usage patterns, making a one-size-fits-all approach ineffective.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Chemosphere
Chemosphere 环境科学-环境科学
CiteScore
15.80
自引率
8.00%
发文量
4975
审稿时长
3.4 months
期刊介绍: Chemosphere, being an international multidisciplinary journal, is dedicated to publishing original communications and review articles on chemicals in the environment. The scope covers a wide range of topics, including the identification, quantification, behavior, fate, toxicology, treatment, and remediation of chemicals in the bio-, hydro-, litho-, and atmosphere, ensuring the broad dissemination of research in this field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信