Parametric finite element method for a nonlocal curvature flow

IF 2.2 2区 数学 Q1 MATHEMATICS, APPLIED
Jie Li, Lifang Pei
{"title":"Parametric finite element method for a nonlocal curvature flow","authors":"Jie Li,&nbsp;Lifang Pei","doi":"10.1016/j.apnum.2025.02.003","DOIUrl":null,"url":null,"abstract":"<div><div>An accurate and efficient parametric finite element method (PFEM) is proposed to simulate numerically the evolution of closed curves under a nonlocal perimeter-conserved generalized curvature flow. We firstly present a variational formulation and show that it preserves two fundamental geometric structures of the flow, i.e., enclosed area increase and perimeter conservation. Then the semi-discrete parametric finite element scheme is proposed and its geometric structure preserving property is rigorously proved. On this basis, an implicit fully discrete scheme is established, which preserves the area-increasing property at the discretized level and enjoys asymptotic equal mesh distribution property. At last, extensive numerical results confirm the good performance of the proposed PFEM, including second-order accuracy in space, area-increasing and the excellent mesh quality.</div></div>","PeriodicalId":8199,"journal":{"name":"Applied Numerical Mathematics","volume":"212 ","pages":"Pages 197-214"},"PeriodicalIF":2.2000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Numerical Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168927425000273","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

An accurate and efficient parametric finite element method (PFEM) is proposed to simulate numerically the evolution of closed curves under a nonlocal perimeter-conserved generalized curvature flow. We firstly present a variational formulation and show that it preserves two fundamental geometric structures of the flow, i.e., enclosed area increase and perimeter conservation. Then the semi-discrete parametric finite element scheme is proposed and its geometric structure preserving property is rigorously proved. On this basis, an implicit fully discrete scheme is established, which preserves the area-increasing property at the discretized level and enjoys asymptotic equal mesh distribution property. At last, extensive numerical results confirm the good performance of the proposed PFEM, including second-order accuracy in space, area-increasing and the excellent mesh quality.
非局部曲率流的参数有限元法
提出了一种精确、高效的参数有限元方法来数值模拟非局部周守恒广义曲率流下闭合曲线的演化。我们首先提出了一个变分公式,并表明它保留了流动的两个基本几何结构,即封闭面积增加和周长守恒。然后提出了半离散参数有限元格式,并严格证明了其几何结构保持性。在此基础上,建立了一种隐式全离散格式,该格式在离散级上保持了面积递增的性质,并具有渐近等网格分布的性质。最后,大量的数值结果证实了该方法具有良好的空间二阶精度、面积递增性和网格质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Numerical Mathematics
Applied Numerical Mathematics 数学-应用数学
CiteScore
5.60
自引率
7.10%
发文量
225
审稿时长
7.2 months
期刊介绍: The purpose of the journal is to provide a forum for the publication of high quality research and tutorial papers in computational mathematics. In addition to the traditional issues and problems in numerical analysis, the journal also publishes papers describing relevant applications in such fields as physics, fluid dynamics, engineering and other branches of applied science with a computational mathematics component. The journal strives to be flexible in the type of papers it publishes and their format. Equally desirable are: (i) Full papers, which should be complete and relatively self-contained original contributions with an introduction that can be understood by the broad computational mathematics community. Both rigorous and heuristic styles are acceptable. Of particular interest are papers about new areas of research, in which other than strictly mathematical arguments may be important in establishing a basis for further developments. (ii) Tutorial review papers, covering some of the important issues in Numerical Mathematics, Scientific Computing and their Applications. The journal will occasionally publish contributions which are larger than the usual format for regular papers. (iii) Short notes, which present specific new results and techniques in a brief communication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信