Decoding interactions between biofilms and DNA nanoparticles

IF 5.9 Q1 MICROBIOLOGY
Alexandra Sousa , Rutuparna Kulkarni , Mona Johannessen , Thorsten Wohland , Nataša Škalko-Basnet , Sybil Obuobi
{"title":"Decoding interactions between biofilms and DNA nanoparticles","authors":"Alexandra Sousa ,&nbsp;Rutuparna Kulkarni ,&nbsp;Mona Johannessen ,&nbsp;Thorsten Wohland ,&nbsp;Nataša Škalko-Basnet ,&nbsp;Sybil Obuobi","doi":"10.1016/j.bioflm.2025.100260","DOIUrl":null,"url":null,"abstract":"<div><div>Biofilms present a great challenge in antimicrobial therapy due to their inherent tolerance to conventional antibiotics, promoting the need for advanced drug delivery strategies that improve therapy. While various nanoparticles (NPs) have been reported for this purpose, DNA-based NPs remain a largely unexploited resource against biofilm-associated infections. To fill this gap and to lay the groundwork for their potential therapeutic exploitation, we investigated the diffusion, penetration, and retention behaviors of three DNA-based nanocarriers —plain or modified—within <em>P. aeruginosa</em> biofilms. Watson-Crick base pairing or hydrophobic interactions mediated the formation of the plain NPs whilst electrostatic interaction enabled optimization of coated NPs via microfluidic mixing. We assessed the interactions of the nanocarriers with biofilm structures via Single Plane Illumination Microscopy – Fluorescence Correlation Spectroscopy (SPIM-FCS) and Confocal Laser Scanning Microscopy (CLSM). We demonstrate the impact of microfluidic parameters on the physicochemical properties of the modified DNA NPs and their subsequent distinct behaviors in the biofilm. Our results show that single stranded DNA micelles (ssDNA micelle) and tetrahedral DNA nanostructures (TDN) had similar diffusion and penetration profiles, whereas chitosan-coated TDN (TDN-Chit) showed reduced diffusion and increased biofilm retention. This is attributable to the relatively larger size and positive surface charge of the TDN-Chit NPs. The study shows first and foremost that DNA can be used as building block in drug delivery for antibiofilm therapeutics. Moreover, the overall behavioral findings are pivotal for the strategic selection of therapeutic agents to be encapsulated within these structures, possibly affecting the treatment efficacy. This research not only highlights the underexplored potential of DNA-based NPs in antibiofilm therapy but also advocates for further studies using different optimization strategies to refine these nanocarrier systems for targeted treatments in biofilm-related infections.</div></div>","PeriodicalId":55844,"journal":{"name":"Biofilm","volume":"9 ","pages":"Article 100260"},"PeriodicalIF":5.9000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biofilm","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590207525000085","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Biofilms present a great challenge in antimicrobial therapy due to their inherent tolerance to conventional antibiotics, promoting the need for advanced drug delivery strategies that improve therapy. While various nanoparticles (NPs) have been reported for this purpose, DNA-based NPs remain a largely unexploited resource against biofilm-associated infections. To fill this gap and to lay the groundwork for their potential therapeutic exploitation, we investigated the diffusion, penetration, and retention behaviors of three DNA-based nanocarriers —plain or modified—within P. aeruginosa biofilms. Watson-Crick base pairing or hydrophobic interactions mediated the formation of the plain NPs whilst electrostatic interaction enabled optimization of coated NPs via microfluidic mixing. We assessed the interactions of the nanocarriers with biofilm structures via Single Plane Illumination Microscopy – Fluorescence Correlation Spectroscopy (SPIM-FCS) and Confocal Laser Scanning Microscopy (CLSM). We demonstrate the impact of microfluidic parameters on the physicochemical properties of the modified DNA NPs and their subsequent distinct behaviors in the biofilm. Our results show that single stranded DNA micelles (ssDNA micelle) and tetrahedral DNA nanostructures (TDN) had similar diffusion and penetration profiles, whereas chitosan-coated TDN (TDN-Chit) showed reduced diffusion and increased biofilm retention. This is attributable to the relatively larger size and positive surface charge of the TDN-Chit NPs. The study shows first and foremost that DNA can be used as building block in drug delivery for antibiofilm therapeutics. Moreover, the overall behavioral findings are pivotal for the strategic selection of therapeutic agents to be encapsulated within these structures, possibly affecting the treatment efficacy. This research not only highlights the underexplored potential of DNA-based NPs in antibiofilm therapy but also advocates for further studies using different optimization strategies to refine these nanocarrier systems for targeted treatments in biofilm-related infections.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Biofilm
Biofilm MICROBIOLOGY-
CiteScore
7.50
自引率
1.50%
发文量
30
审稿时长
57 days
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信