Stable soil moisture promotes shoot performance and shapes the root-rhizosphere microbiome

IF 5.9 1区 农林科学 Q1 AGRONOMY
Dichuan Liu , Zhuan Wang , Guolong Zhu , Aiguo Xu , Renlian Zhang , Ray Bryant , Patrick J. Drohan , Huaiyu Long , Viola Willemsen
{"title":"Stable soil moisture promotes shoot performance and shapes the root-rhizosphere microbiome","authors":"Dichuan Liu ,&nbsp;Zhuan Wang ,&nbsp;Guolong Zhu ,&nbsp;Aiguo Xu ,&nbsp;Renlian Zhang ,&nbsp;Ray Bryant ,&nbsp;Patrick J. Drohan ,&nbsp;Huaiyu Long ,&nbsp;Viola Willemsen","doi":"10.1016/j.agwat.2025.109354","DOIUrl":null,"url":null,"abstract":"<div><div>Soil moisture is a key factor limiting crop productivity and has been widely studied to optimize agriculture production. However, the majority of previous studies focus only on the soil moisture content and ignore its temporal variation. This study investigates the impact of different soil moisture conditions, specifically fluctuating soil moisture (FSM) and stable soil moisture (SSM), on the rhizosphere microbiome and the plant performance of romaine lettuce. Plants were grown in natural and sterilized soils, which were subjected to SSM through negative pressure irrigation to achieve high, mid, and low moisture levels and FSM through manual irrigation. Shoot performance parameters, such as plant height, leaf count, -size, and biomass, were significantly enhanced under SSM compared to FSM. The findings reveal SSM enhances shoot performance and crop water productivity (WPc) independent of root size, as indicated by a lower root/shoot ratio. Analyses of the soil microbiome showed that the root-associated rhizosphere microbial community composition differs for SSM and FSM conditions, while the bulk soil microbial community was unaffected. This suggests that the response of the romaine lettuce rhizosphere microbial community to soil moisture temporal variation is driven by root microbiome interactions. This study indicates that stable soil moisture, together with the recruited root microbiome, induces shoot performance without enhancing root growth. Overall, the findings highlight the importance of optimizing soil moisture dynamics to improve plant growth and resource efficiency, offering valuable implications for sustainable agricultural practices.</div></div>","PeriodicalId":7634,"journal":{"name":"Agricultural Water Management","volume":"310 ","pages":"Article 109354"},"PeriodicalIF":5.9000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agricultural Water Management","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S037837742500068X","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

Abstract

Soil moisture is a key factor limiting crop productivity and has been widely studied to optimize agriculture production. However, the majority of previous studies focus only on the soil moisture content and ignore its temporal variation. This study investigates the impact of different soil moisture conditions, specifically fluctuating soil moisture (FSM) and stable soil moisture (SSM), on the rhizosphere microbiome and the plant performance of romaine lettuce. Plants were grown in natural and sterilized soils, which were subjected to SSM through negative pressure irrigation to achieve high, mid, and low moisture levels and FSM through manual irrigation. Shoot performance parameters, such as plant height, leaf count, -size, and biomass, were significantly enhanced under SSM compared to FSM. The findings reveal SSM enhances shoot performance and crop water productivity (WPc) independent of root size, as indicated by a lower root/shoot ratio. Analyses of the soil microbiome showed that the root-associated rhizosphere microbial community composition differs for SSM and FSM conditions, while the bulk soil microbial community was unaffected. This suggests that the response of the romaine lettuce rhizosphere microbial community to soil moisture temporal variation is driven by root microbiome interactions. This study indicates that stable soil moisture, together with the recruited root microbiome, induces shoot performance without enhancing root growth. Overall, the findings highlight the importance of optimizing soil moisture dynamics to improve plant growth and resource efficiency, offering valuable implications for sustainable agricultural practices.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Agricultural Water Management
Agricultural Water Management 农林科学-农艺学
CiteScore
12.10
自引率
14.90%
发文量
648
审稿时长
4.9 months
期刊介绍: Agricultural Water Management publishes papers of international significance relating to the science, economics, and policy of agricultural water management. In all cases, manuscripts must address implications and provide insight regarding agricultural water management.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信