Quantify the compound effects caused by the interactions between inland river system and coastal processes in hurricane coastal flooding through controlled hydrodynamic modeling experiments
IF 3.1 3区 地球科学Q2 METEOROLOGY & ATMOSPHERIC SCIENCES
Hongyuan Zhang , Dongliang Shen , Len Pietrafesa , Paul Gayes , Shaowu Bao
{"title":"Quantify the compound effects caused by the interactions between inland river system and coastal processes in hurricane coastal flooding through controlled hydrodynamic modeling experiments","authors":"Hongyuan Zhang , Dongliang Shen , Len Pietrafesa , Paul Gayes , Shaowu Bao","doi":"10.1016/j.ocemod.2025.102506","DOIUrl":null,"url":null,"abstract":"<div><div>Coastal flooding during hurricanes is a complex phenomenon involving the interaction of multiple drivers operating across different spatial scales, such as storm surge, rainfall, river discharge, and tides. Accurately assessing and predicting compound flooding requires considering the cross-scale nature of these processes and their interdependencies. This study investigates the compound effects and cross-scale interactions of flood drivers during Hurricane Matthew (2016) along the South Carolina coast using a coupled hydrology-hydrodynamic model. The model domain encompasses the land-ocean continuum, from rivers to the coastal ocean, allowing for the examination of compound flooding across the entire system. Controlled numerical experiments are conducted to quantify the individual, combined, and compound impacts of flood drivers across scales by selectively including or excluding riverine, storm surge, and tidal forcings. The coupled modeling approach reveals distinct zones of positive and negative compound effects, depending on the alignment of coastal water levels with river flood timing. River-surge interactions alter flooding, causing increases upstream and decreases downstream compared to isolated effects. Tide-surge and tide-river interactions induce oscillatory compound effects. The study demonstrates that the compound effect significantly influences hurricane coastal flooding beyond the linear superposition of flooding caused by individual drivers. The cross-scale modeling framework and analysis approach presented here can inform multi-hazard analysis, coastal flood risk management, and future studies of complex, multi-scale hydrologic systems.</div></div>","PeriodicalId":19457,"journal":{"name":"Ocean Modelling","volume":"194 ","pages":"Article 102506"},"PeriodicalIF":3.1000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ocean Modelling","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1463500325000101","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Coastal flooding during hurricanes is a complex phenomenon involving the interaction of multiple drivers operating across different spatial scales, such as storm surge, rainfall, river discharge, and tides. Accurately assessing and predicting compound flooding requires considering the cross-scale nature of these processes and their interdependencies. This study investigates the compound effects and cross-scale interactions of flood drivers during Hurricane Matthew (2016) along the South Carolina coast using a coupled hydrology-hydrodynamic model. The model domain encompasses the land-ocean continuum, from rivers to the coastal ocean, allowing for the examination of compound flooding across the entire system. Controlled numerical experiments are conducted to quantify the individual, combined, and compound impacts of flood drivers across scales by selectively including or excluding riverine, storm surge, and tidal forcings. The coupled modeling approach reveals distinct zones of positive and negative compound effects, depending on the alignment of coastal water levels with river flood timing. River-surge interactions alter flooding, causing increases upstream and decreases downstream compared to isolated effects. Tide-surge and tide-river interactions induce oscillatory compound effects. The study demonstrates that the compound effect significantly influences hurricane coastal flooding beyond the linear superposition of flooding caused by individual drivers. The cross-scale modeling framework and analysis approach presented here can inform multi-hazard analysis, coastal flood risk management, and future studies of complex, multi-scale hydrologic systems.
期刊介绍:
The main objective of Ocean Modelling is to provide rapid communication between those interested in ocean modelling, whether through direct observation, or through analytical, numerical or laboratory models, and including interactions between physical and biogeochemical or biological phenomena. Because of the intimate links between ocean and atmosphere, involvement of scientists interested in influences of either medium on the other is welcome. The journal has a wide scope and includes ocean-atmosphere interaction in various forms as well as pure ocean results. In addition to primary peer-reviewed papers, the journal provides review papers, preliminary communications, and discussions.