Rapid bacterial detection through microfluidic integration with a glucometer

IF 4.8 2区 化学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Merve Eryilmaz , Sibel Ilbasmis-Tamer , Sallahuddin Panhwar , Emine Kübra Tayyarcan , İsmail Hakkı Boyaci , Zekiye Suludere , Demet Çetin , Adem Zengin , Ender Yıldırım , Uğur Tamer
{"title":"Rapid bacterial detection through microfluidic integration with a glucometer","authors":"Merve Eryilmaz ,&nbsp;Sibel Ilbasmis-Tamer ,&nbsp;Sallahuddin Panhwar ,&nbsp;Emine Kübra Tayyarcan ,&nbsp;İsmail Hakkı Boyaci ,&nbsp;Zekiye Suludere ,&nbsp;Demet Çetin ,&nbsp;Adem Zengin ,&nbsp;Ender Yıldırım ,&nbsp;Uğur Tamer","doi":"10.1016/j.bioelechem.2025.108936","DOIUrl":null,"url":null,"abstract":"<div><div>We present a novel approach for sensitive and portable detection of pathogenic bacteria, which is crucial for household and clinical practice. Our method employs immunoliposomes, antibodies, and microchip to detect specific pathogens quantitatively. Gold and metal metal–organic nanoparticles and liposomes were characterized using high-resolution techniques like TEM and SEM. Utilizing a commercial, personal glucose meter (PGM), we initially detected released glucose from antibody-modified liposomes and microchips with MOF-NPs. Detection on the microchip was achieved within 30 min, while the PGM analysis took only one minute for targeted bacteria, yielding glucose signals of 66 mg/dL and 69 mg/dL, respectively. Serial dilutions with group A-<em>Streptococcus pyogenes</em> (GAS) (1.4 × 10<sup>^4</sup>–1.4 × 10<sup>^8</sup> CFU/mL) demonstrated quantitative measurement applicability. This innovative approach and a portable PGM hold promise for various industries, including physician labs, hospitals, and households.</div></div>","PeriodicalId":252,"journal":{"name":"Bioelectrochemistry","volume":"164 ","pages":"Article 108936"},"PeriodicalIF":4.8000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioelectrochemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1567539425000398","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

We present a novel approach for sensitive and portable detection of pathogenic bacteria, which is crucial for household and clinical practice. Our method employs immunoliposomes, antibodies, and microchip to detect specific pathogens quantitatively. Gold and metal metal–organic nanoparticles and liposomes were characterized using high-resolution techniques like TEM and SEM. Utilizing a commercial, personal glucose meter (PGM), we initially detected released glucose from antibody-modified liposomes and microchips with MOF-NPs. Detection on the microchip was achieved within 30 min, while the PGM analysis took only one minute for targeted bacteria, yielding glucose signals of 66 mg/dL and 69 mg/dL, respectively. Serial dilutions with group A-Streptococcus pyogenes (GAS) (1.4 × 10^4–1.4 × 10^8 CFU/mL) demonstrated quantitative measurement applicability. This innovative approach and a portable PGM hold promise for various industries, including physician labs, hospitals, and households.
微流控集成血糖仪快速细菌检测
我们提出了一种新的方法,用于敏感和便携式检测致病菌,这是至关重要的家庭和临床实践。我们的方法采用免疫脂质体、抗体和微芯片定量检测特定病原体。利用TEM和SEM等高分辨率技术对金、金属有机纳米粒子和脂质体进行了表征。利用商业化的个人血糖仪(PGM),我们首先检测了抗体修饰脂质体和带有MOF-NPs的微芯片中释放的葡萄糖。微芯片上的检测在30分钟内完成,而PGM分析对目标细菌只需要1分钟,分别产生66 mg/dL和69 mg/dL的葡萄糖信号。a群化脓性链球菌(GAS)连续稀释(1.4 × 10^ 4-1.4 × 10^8 CFU/mL)证明了定量测量的适用性。这种创新的方法和便携式PGM有望应用于各种行业,包括医生实验室、医院和家庭。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Bioelectrochemistry
Bioelectrochemistry 生物-电化学
CiteScore
9.10
自引率
6.00%
发文量
238
审稿时长
38 days
期刊介绍: An International Journal Devoted to Electrochemical Aspects of Biology and Biological Aspects of Electrochemistry Bioelectrochemistry is an international journal devoted to electrochemical principles in biology and biological aspects of electrochemistry. It publishes experimental and theoretical papers dealing with the electrochemical aspects of: • Electrified interfaces (electric double layers, adsorption, electron transfer, protein electrochemistry, basic principles of biosensors, biosensor interfaces and bio-nanosensor design and construction. • Electric and magnetic field effects (field-dependent processes, field interactions with molecules, intramolecular field effects, sensory systems for electric and magnetic fields, molecular and cellular mechanisms) • Bioenergetics and signal transduction (energy conversion, photosynthetic and visual membranes) • Biomembranes and model membranes (thermodynamics and mechanics, membrane transport, electroporation, fusion and insertion) • Electrochemical applications in medicine and biotechnology (drug delivery and gene transfer to cells and tissues, iontophoresis, skin electroporation, injury and repair). • Organization and use of arrays in-vitro and in-vivo, including as part of feedback control. • Electrochemical interrogation of biofilms as generated by microorganisms and tissue reaction associated with medical implants.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信