Stabilization of flame-retardant gel polymer electrolyte against Na anode via an additive confined MOF-based composite gel interlayer

IF 13.1 1区 化学 Q1 Energy
Zhengrui Miao , Jiayi Yu , Xuecheng Li , Yixiang Ye , Penghui Song , Peng He , Suli Chen , Tianxi Liu
{"title":"Stabilization of flame-retardant gel polymer electrolyte against Na anode via an additive confined MOF-based composite gel interlayer","authors":"Zhengrui Miao ,&nbsp;Jiayi Yu ,&nbsp;Xuecheng Li ,&nbsp;Yixiang Ye ,&nbsp;Penghui Song ,&nbsp;Peng He ,&nbsp;Suli Chen ,&nbsp;Tianxi Liu","doi":"10.1016/j.jechem.2025.01.006","DOIUrl":null,"url":null,"abstract":"<div><div>Flame-retardant gel polymer electrolyte (FRGPE) with high ionic conductivity and practical safety is essential for the next generation of high energy density sodium metal batteries (SMBs). However, they suffer from serious side reactions and insufficient interfacial stability against sodium metal anode, causing severe performance degradation and even safety issues. Herein, to address these challenges, a fluoroethylene carbonate (FEC) additive confined metal-organic framework (MOF)-based composite gel (AC-MCG) interlayer was constructed upon sodium anode through a facile in-situ UV-induced photopolymerization. The FEC confined in AC-MCG induces the formation of NaF-rich inorganic solid-electrolyte interphase, effectively eliminating the side reactions between the FRGPE and sodium metal anode. Moreover, the MOF with ordered nanochannels can homogenize Na<sup>+</sup> flux during the plating process and also endow the AC-MCG interlayer with high mechanical strength, thus sufficiently suppressing the growth of sodium dendrites. Benefitting from these merits of the AC-MCG interlayer, a high critical current density of 2.0 mA cm<sup>−2</sup> and a long-term cycling life for over 4200 h at 0.1 mA cm<sup>−2</sup> are achieved for the Na/Na symmetric cells. Besides, the solid-state SMBs paired with the constructed AC-MCG interlayer also demonstrated considerable electrochemical performance and practical safety.</div></div>","PeriodicalId":15728,"journal":{"name":"Journal of Energy Chemistry","volume":"104 ","pages":"Pages 505-513"},"PeriodicalIF":13.1000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Energy Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095495625000452","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Energy","Score":null,"Total":0}
引用次数: 0

Abstract

Flame-retardant gel polymer electrolyte (FRGPE) with high ionic conductivity and practical safety is essential for the next generation of high energy density sodium metal batteries (SMBs). However, they suffer from serious side reactions and insufficient interfacial stability against sodium metal anode, causing severe performance degradation and even safety issues. Herein, to address these challenges, a fluoroethylene carbonate (FEC) additive confined metal-organic framework (MOF)-based composite gel (AC-MCG) interlayer was constructed upon sodium anode through a facile in-situ UV-induced photopolymerization. The FEC confined in AC-MCG induces the formation of NaF-rich inorganic solid-electrolyte interphase, effectively eliminating the side reactions between the FRGPE and sodium metal anode. Moreover, the MOF with ordered nanochannels can homogenize Na+ flux during the plating process and also endow the AC-MCG interlayer with high mechanical strength, thus sufficiently suppressing the growth of sodium dendrites. Benefitting from these merits of the AC-MCG interlayer, a high critical current density of 2.0 mA cm−2 and a long-term cycling life for over 4200 h at 0.1 mA cm−2 are achieved for the Na/Na symmetric cells. Besides, the solid-state SMBs paired with the constructed AC-MCG interlayer also demonstrated considerable electrochemical performance and practical safety.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Energy Chemistry
Journal of Energy Chemistry CHEMISTRY, APPLIED-CHEMISTRY, PHYSICAL
CiteScore
19.10
自引率
8.40%
发文量
3631
审稿时长
15 days
期刊介绍: The Journal of Energy Chemistry, the official publication of Science Press and the Dalian Institute of Chemical Physics, Chinese Academy of Sciences, serves as a platform for reporting creative research and innovative applications in energy chemistry. It mainly reports on creative researches and innovative applications of chemical conversions of fossil energy, carbon dioxide, electrochemical energy and hydrogen energy, as well as the conversions of biomass and solar energy related with chemical issues to promote academic exchanges in the field of energy chemistry and to accelerate the exploration, research and development of energy science and technologies. This journal focuses on original research papers covering various topics within energy chemistry worldwide, including: Optimized utilization of fossil energy Hydrogen energy Conversion and storage of electrochemical energy Capture, storage, and chemical conversion of carbon dioxide Materials and nanotechnologies for energy conversion and storage Chemistry in biomass conversion Chemistry in the utilization of solar energy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信