Further results on the mixed metric dimension of graphs

IF 1 3区 数学 Q3 MATHEMATICS, APPLIED
Hongbo Hua , Yaojun Chen , Xinying Hua
{"title":"Further results on the mixed metric dimension of graphs","authors":"Hongbo Hua ,&nbsp;Yaojun Chen ,&nbsp;Xinying Hua","doi":"10.1016/j.dam.2025.02.012","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mi>G</mi></math></span> be a graph with vertex set <span><math><mrow><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> and edge set <span><math><mrow><mi>E</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>. The <em>mixed metric dimension</em> of a connected graph <span><math><mi>G</mi></math></span>, denoted by <span><math><mrow><msub><mrow><mi>dim</mi></mrow><mrow><mi>m</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>, is the minimum cardinality of a subset <span><math><mrow><mi>S</mi><mo>⊆</mo><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> such that for any two <span><math><mrow><mi>u</mi><mo>,</mo><mspace></mspace><mi>v</mi><mo>∈</mo><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>∪</mo><mi>E</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>, there exists <span><math><mrow><mi>w</mi><mo>∈</mo><mi>S</mi></mrow></math></span> so that the distance between <span><math><mi>w</mi></math></span> and <span><math><mi>u</mi></math></span> is not equal to the distance between <span><math><mi>w</mi></math></span> and <span><math><mi>v</mi></math></span>. In this paper, we present further results on the mixed metric dimension. First, we give a sharp upper bound on the mixed metric dimension for a graph in terms of the number of cut vertices of this graph. Second, we compare the mixed metric dimension with geodesic transversal number for trees, unicyclic graphs and block graphs. Finally, we provide some new results about a conjecture, due to Sedlar and Škrekovski (Sedlar and Škrekovski, 2021), on the mixed metric dimension.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"367 ","pages":"Pages 99-106"},"PeriodicalIF":1.0000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X2500071X","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Let G be a graph with vertex set V(G) and edge set E(G). The mixed metric dimension of a connected graph G, denoted by dimm(G), is the minimum cardinality of a subset SV(G) such that for any two u,vV(G)E(G), there exists wS so that the distance between w and u is not equal to the distance between w and v. In this paper, we present further results on the mixed metric dimension. First, we give a sharp upper bound on the mixed metric dimension for a graph in terms of the number of cut vertices of this graph. Second, we compare the mixed metric dimension with geodesic transversal number for trees, unicyclic graphs and block graphs. Finally, we provide some new results about a conjecture, due to Sedlar and Škrekovski (Sedlar and Škrekovski, 2021), on the mixed metric dimension.
图的混合度量维数的进一步结果
设G是一个顶点集V(G),边集E(G)的图。连通图G的混合度量维,记为dimm(G),是子集S≥V(G)的最小基数,使得对于任意两个u, V∈V(G)∪E(G),存在w∈S,使得w与u之间的距离不等于w与V之间的距离。本文给出了关于混合度量维的进一步结果。首先,我们根据图的切割顶点的数量给出了图的混合度量维的一个尖锐的上界。其次,将混合度量维数与树、单环图和块图的测地线截数进行了比较。最后,我们提供了一些关于Sedlar和Škrekovski (Sedlar和Škrekovski, 2021)关于混合度量维度的猜想的新结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Discrete Applied Mathematics
Discrete Applied Mathematics 数学-应用数学
CiteScore
2.30
自引率
9.10%
发文量
422
审稿时长
4.5 months
期刊介绍: The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal. Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信