Optimisation of flow configuration for PVT system assisted by MgO nanoparticles PCM cooling

IF 8 Q1 ENERGY & FUELS
W. Phukaokaew , A. Suksri , K. Punyawudho , T. Wongwuttanasatian
{"title":"Optimisation of flow configuration for PVT system assisted by MgO nanoparticles PCM cooling","authors":"W. Phukaokaew ,&nbsp;A. Suksri ,&nbsp;K. Punyawudho ,&nbsp;T. Wongwuttanasatian","doi":"10.1016/j.nexus.2025.100389","DOIUrl":null,"url":null,"abstract":"<div><div>To improve the global environment, it is essential to address the significant concerns raised by the rising energy demand. Thermal photovoltaic (PVT) systems enjoy widespread popularity. These systems convert solar energy into electrical/thermal energy; however, elevated temperatures cause problems. Magnesium oxide (MgO) nanoparticles and lauric acid (LA) phase change material (PCM) were utilized. The two were combined and filled into a container. The container's distinctive design incorporates a fully organized micro-channel structure as well as eight integrated water tubes. The system works by first absorbing waste heat from the PV module and then directing it into the water tubes for further utilization. The study also examined the effects of water tube configurations, using three different types: a U-tube, a half-serpentine flow, and a serpentine flow. These configurations affected the absorption of heat from the PV panel, which improved both the power generation and the overall efficiency of the PVT system. Furthermore, the investigation tested the PVT system's water inlet using dimensionless water flow (Reynolds numbers, <em>Re</em>) levels ranging from 1100 to 7700. The findings indicate that every level of <em>Re</em> increases electrical efficiency, with the U-tube configuration approach producing the maximum value. In addition, when it comes to thermal efficiency, serpentine flow configurations yield the highest improvement. The most optimal tube arrangement is a serpentine configuration at <em>Re</em> = 5500, which reduces the PV surface temperature by 3.14 °C while achieving the highest overall efficiency of 80.63 %.</div></div>","PeriodicalId":93548,"journal":{"name":"Energy nexus","volume":"17 ","pages":"Article 100389"},"PeriodicalIF":8.0000,"publicationDate":"2025-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy nexus","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772427125000300","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

To improve the global environment, it is essential to address the significant concerns raised by the rising energy demand. Thermal photovoltaic (PVT) systems enjoy widespread popularity. These systems convert solar energy into electrical/thermal energy; however, elevated temperatures cause problems. Magnesium oxide (MgO) nanoparticles and lauric acid (LA) phase change material (PCM) were utilized. The two were combined and filled into a container. The container's distinctive design incorporates a fully organized micro-channel structure as well as eight integrated water tubes. The system works by first absorbing waste heat from the PV module and then directing it into the water tubes for further utilization. The study also examined the effects of water tube configurations, using three different types: a U-tube, a half-serpentine flow, and a serpentine flow. These configurations affected the absorption of heat from the PV panel, which improved both the power generation and the overall efficiency of the PVT system. Furthermore, the investigation tested the PVT system's water inlet using dimensionless water flow (Reynolds numbers, Re) levels ranging from 1100 to 7700. The findings indicate that every level of Re increases electrical efficiency, with the U-tube configuration approach producing the maximum value. In addition, when it comes to thermal efficiency, serpentine flow configurations yield the highest improvement. The most optimal tube arrangement is a serpentine configuration at Re = 5500, which reduces the PV surface temperature by 3.14 °C while achieving the highest overall efficiency of 80.63 %.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Energy nexus
Energy nexus Energy (General), Ecological Modelling, Renewable Energy, Sustainability and the Environment, Water Science and Technology, Agricultural and Biological Sciences (General)
CiteScore
7.70
自引率
0.00%
发文量
0
审稿时长
109 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信