L2 decay of weak solutions for the Navier–Stokes equations with supercritical dissipation

IF 1.8 3区 数学 Q1 MATHEMATICS, APPLIED
Wilberclay G. Melo
{"title":"L2 decay of weak solutions for the Navier–Stokes equations with supercritical dissipation","authors":"Wilberclay G. Melo","doi":"10.1016/j.nonrwa.2025.104329","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we establish temporal decay for a weak solution <span><math><mrow><mi>u</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>t</mi><mo>)</mo></mrow></mrow></math></span> (with initial data <span><math><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>) of the Navier–Stokes equations with supercritical fractional dissipation <span><math><mrow><mi>α</mi><mo>∈</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mfrac><mrow><mn>5</mn></mrow><mrow><mn>4</mn></mrow></mfrac><mo>)</mo></mrow></mrow></math></span> in <span><math><mrow><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><msup><mrow><mover><mrow><mi>H</mi></mrow><mrow><mo>̇</mo></mrow></mover></mrow><mrow><mi>s</mi></mrow></msup><mrow><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>)</mo></mrow></mrow></math></span> (<span><math><mrow><mi>s</mi><mo>≤</mo><mn>0</mn></mrow></math></span>). More precisely, we prove that <span><math><mi>u</mi></math></span> satisfies the following upper bound: <span><math><mrow><msubsup><mrow><mo>‖</mo><mi>u</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>‖</mo></mrow><mrow><mn>2</mn></mrow><mrow><mn>2</mn></mrow></msubsup><mo>≤</mo><mi>C</mi><msup><mrow><mrow><mo>(</mo><mn>1</mn><mo>+</mo><mi>t</mi><mo>)</mo></mrow></mrow><mrow><mo>−</mo><mfrac><mrow><mn>3</mn><mo>−</mo><mn>2</mn><mi>p</mi></mrow><mrow><mn>2</mn><mi>α</mi></mrow></mfrac></mrow></msup><mo>,</mo><mspace></mspace><mo>∀</mo><mi>t</mi><mo>&gt;</mo><mn>0</mn><mo>.</mo></mrow></math></span> This estimate leads us to show the next inequality: <span><math><mrow><msubsup><mrow><mo>‖</mo><mi>u</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>‖</mo></mrow><mrow><msup><mrow><mover><mrow><mi>H</mi></mrow><mrow><mo>̇</mo></mrow></mover></mrow><mrow><mo>−</mo><mi>δ</mi></mrow></msup></mrow><mrow><mn>2</mn></mrow></msubsup><mo>≤</mo><mi>C</mi><msup><mrow><mrow><mo>(</mo><mn>1</mn><mo>+</mo><mi>t</mi><mo>)</mo></mrow></mrow><mrow><mo>−</mo><mfrac><mrow><mn>3</mn><mo>−</mo><mn>2</mn><mi>δ</mi><mo>−</mo><mn>2</mn><mi>p</mi></mrow><mrow><mn>2</mn><mi>α</mi></mrow></mfrac></mrow></msup><mo>,</mo><mspace></mspace><mo>∀</mo><mi>t</mi><mo>&gt;</mo><mn>0</mn><mo>.</mo></mrow></math></span> These results are obtained by applying standard Fourier Analysis and they hold for <span><math><mrow><mi>α</mi><mo>∈</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mfrac><mrow><mn>5</mn></mrow><mrow><mn>4</mn></mrow></mfrac><mo>)</mo></mrow><mo>,</mo></mrow></math></span> <span><math><mrow><mi>p</mi><mo>∈</mo><mrow><mo>[</mo><mo>−</mo><mn>1</mn><mo>,</mo><mfrac><mrow><mn>3</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>)</mo></mrow></mrow></math></span>, <span><math><mrow><mi>δ</mi><mo>∈</mo><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mfrac><mrow><mn>3</mn><mo>−</mo><mn>2</mn><mi>p</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>∈</mo><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>)</mo></mrow><mo>∩</mo><msup><mrow><mi>Y</mi></mrow><mrow><mi>p</mi></mrow></msup><mrow><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>)</mo></mrow></mrow></math></span> (and also <span><math><mrow><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>∈</mo><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup><mrow><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>)</mo></mrow></mrow></math></span> for <span><math><mrow><mi>p</mi><mo>=</mo><mo>−</mo><mn>1</mn></mrow></math></span> and a certain finite set of values of <span><math><mi>α</mi></math></span>).</div></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"84 ","pages":"Article 104329"},"PeriodicalIF":1.8000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Real World Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S146812182500015X","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we establish temporal decay for a weak solution u(x,t) (with initial data u0) of the Navier–Stokes equations with supercritical fractional dissipation α(0,54) in L2(R3) and Ḣs(R3) (s0). More precisely, we prove that u satisfies the following upper bound: u(t)22C(1+t)32p2α,t>0. This estimate leads us to show the next inequality: u(t)Ḣδ2C(1+t)32δ2p2α,t>0. These results are obtained by applying standard Fourier Analysis and they hold for α(0,54), p[1,32), δ[0,32p2) and u0L2(R3)Yp(R3) (and also u0L1(R3) for p=1 and a certain finite set of values of α).
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.80
自引率
5.00%
发文量
176
审稿时长
59 days
期刊介绍: Nonlinear Analysis: Real World Applications welcomes all research articles of the highest quality with special emphasis on applying techniques of nonlinear analysis to model and to treat nonlinear phenomena with which nature confronts us. Coverage of applications includes any branch of science and technology such as solid and fluid mechanics, material science, mathematical biology and chemistry, control theory, and inverse problems. The aim of Nonlinear Analysis: Real World Applications is to publish articles which are predominantly devoted to employing methods and techniques from analysis, including partial differential equations, functional analysis, dynamical systems and evolution equations, calculus of variations, and bifurcations theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信