Janet J.W. Dong , Lora R. Du , Kathy Q. Ji , Dax T.X. Zhang
{"title":"New refinements of Narayana polynomials and Motzkin polynomials","authors":"Janet J.W. Dong , Lora R. Du , Kathy Q. Ji , Dax T.X. Zhang","doi":"10.1016/j.aam.2025.102855","DOIUrl":null,"url":null,"abstract":"<div><div>Chen, Deutsch and Elizalde introduced a refinement of the Narayana polynomials by distinguishing between old (leftmost child) and young leaves of plane trees. They also provided a refinement of Coker's formula by constructing a bijection. In fact, Coker's formula establishes a connection between the Narayana polynomials and the Motzkin polynomials, which implies the <em>γ</em>-positivity of the Narayana polynomials. In this paper, we introduce the polynomial <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>11</mn></mrow></msub><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>12</mn></mrow></msub><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>;</mo><msub><mrow><mi>y</mi></mrow><mrow><mn>11</mn></mrow></msub><mo>,</mo><msub><mrow><mi>y</mi></mrow><mrow><mn>12</mn></mrow></msub><mo>,</mo><msub><mrow><mi>y</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span>, which further refines the Narayana polynomials by considering leaves of plane trees that have no siblings. We obtain the generating function for <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>11</mn></mrow></msub><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>12</mn></mrow></msub><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>;</mo><msub><mrow><mi>y</mi></mrow><mrow><mn>11</mn></mrow></msub><mo>,</mo><msub><mrow><mi>y</mi></mrow><mrow><mn>12</mn></mrow></msub><mo>,</mo><msub><mrow><mi>y</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span>. To achieve further refinement of Coker's formula based on the polynomial <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>11</mn></mrow></msub><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>12</mn></mrow></msub><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>;</mo><msub><mrow><mi>y</mi></mrow><mrow><mn>11</mn></mrow></msub><mo>,</mo><msub><mrow><mi>y</mi></mrow><mrow><mn>12</mn></mrow></msub><mo>,</mo><msub><mrow><mi>y</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span>, we consider a refinement <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><msub><mrow><mi>u</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>u</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><msub><mrow><mi>u</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>;</mo><msub><mrow><mi>v</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>v</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span> of the Motzkin polynomials by classifying the old leaves of a tip-augmented plane tree into three categories and the young leaves into two categories. The generating function for <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><msub><mrow><mi>u</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>u</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><msub><mrow><mi>u</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>;</mo><msub><mrow><mi>v</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>v</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span> is also established, and the refinement of Coker's formula is immediately derived by combining the generating function for <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>11</mn></mrow></msub><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>12</mn></mrow></msub><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>;</mo><msub><mrow><mi>y</mi></mrow><mrow><mn>11</mn></mrow></msub><mo>,</mo><msub><mrow><mi>y</mi></mrow><mrow><mn>12</mn></mrow></msub><mo>,</mo><msub><mrow><mi>y</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span> and the generating function for <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><msub><mrow><mi>u</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>u</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><msub><mrow><mi>u</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>;</mo><msub><mrow><mi>v</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>v</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span>. We derive several interesting consequences from this refinement of Coker's formula, including the new symmetries of plane trees, Euler transformation of the Narayana polynomials and the Motzkin polynomials due to Lin and Kim and the real-rootedness of the Motzkin polynomials. The method used in this paper is the grammatical approach introduced by Chen. We develop a unified grammatical approach to exploring polynomials associated with the statistics defined on plane trees. The derivations of the generating functions for <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>11</mn></mrow></msub><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>12</mn></mrow></msub><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>;</mo><msub><mrow><mi>y</mi></mrow><mrow><mn>11</mn></mrow></msub><mo>,</mo><msub><mrow><mi>y</mi></mrow><mrow><mn>12</mn></mrow></msub><mo>,</mo><msub><mrow><mi>y</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span> and <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><msub><mrow><mi>u</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>u</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><msub><mrow><mi>u</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>;</mo><msub><mrow><mi>v</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>v</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span> become quite simple once their grammars are established.</div></div>","PeriodicalId":50877,"journal":{"name":"Advances in Applied Mathematics","volume":"166 ","pages":"Article 102855"},"PeriodicalIF":1.0000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S019688582500017X","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Chen, Deutsch and Elizalde introduced a refinement of the Narayana polynomials by distinguishing between old (leftmost child) and young leaves of plane trees. They also provided a refinement of Coker's formula by constructing a bijection. In fact, Coker's formula establishes a connection between the Narayana polynomials and the Motzkin polynomials, which implies the γ-positivity of the Narayana polynomials. In this paper, we introduce the polynomial , which further refines the Narayana polynomials by considering leaves of plane trees that have no siblings. We obtain the generating function for . To achieve further refinement of Coker's formula based on the polynomial , we consider a refinement of the Motzkin polynomials by classifying the old leaves of a tip-augmented plane tree into three categories and the young leaves into two categories. The generating function for is also established, and the refinement of Coker's formula is immediately derived by combining the generating function for and the generating function for . We derive several interesting consequences from this refinement of Coker's formula, including the new symmetries of plane trees, Euler transformation of the Narayana polynomials and the Motzkin polynomials due to Lin and Kim and the real-rootedness of the Motzkin polynomials. The method used in this paper is the grammatical approach introduced by Chen. We develop a unified grammatical approach to exploring polynomials associated with the statistics defined on plane trees. The derivations of the generating functions for and become quite simple once their grammars are established.
期刊介绍:
Interdisciplinary in its coverage, Advances in Applied Mathematics is dedicated to the publication of original and survey articles on rigorous methods and results in applied mathematics. The journal features articles on discrete mathematics, discrete probability theory, theoretical statistics, mathematical biology and bioinformatics, applied commutative algebra and algebraic geometry, convexity theory, experimental mathematics, theoretical computer science, and other areas.
Emphasizing papers that represent a substantial mathematical advance in their field, the journal is an excellent source of current information for mathematicians, computer scientists, applied mathematicians, physicists, statisticians, and biologists. Over the past ten years, Advances in Applied Mathematics has published research papers written by many of the foremost mathematicians of our time.