Symplectic mixed spectral element time domain method for 3-D Schrödinger–Maxwell equations under Lorenz gauge

IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED
Chengzhuo Zhao, Wenjie Tang, Kangshuai Du, Na Liu
{"title":"Symplectic mixed spectral element time domain method for 3-D Schrödinger–Maxwell equations under Lorenz gauge","authors":"Chengzhuo Zhao,&nbsp;Wenjie Tang,&nbsp;Kangshuai Du,&nbsp;Na Liu","doi":"10.1016/j.aml.2025.109497","DOIUrl":null,"url":null,"abstract":"<div><div>In this work, Hamiltonian variational principle is employed to prove that Schrödinger–Maxwell (SM) equations under Lorenz gauge exhibit a symplectic structure. Based on this, symplectic mixed spectral element time domain method (<span><math><mtext>S-MSETD</mtext></math></span>) for SM equations under Lorenz gauge is proposed. This method is a structure-preserving geometric algorithm that achieves high accuracy, particularly in long-term simulation. Simultaneously, to address the incompatibility issue between the divergence operator acting on the magnetic vector potential <span><math><mi>A</mi></math></span> and the edge spectral element method (SEM), an auxiliary variable <span><math><mrow><mi>p</mi><mo>=</mo><mo>∇</mo><mi>⋅</mi><mi>A</mi></mrow></math></span> is introduced. This adjustment allows SM equations under Lorenz gauge to be effectively discretized using mixed SEM (MSEM). Finally, the effectiveness of S-MSETD is validated through numerical simulations.</div></div>","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":"164 ","pages":"Article 109497"},"PeriodicalIF":2.9000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics Letters","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893965925000473","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, Hamiltonian variational principle is employed to prove that Schrödinger–Maxwell (SM) equations under Lorenz gauge exhibit a symplectic structure. Based on this, symplectic mixed spectral element time domain method (S-MSETD) for SM equations under Lorenz gauge is proposed. This method is a structure-preserving geometric algorithm that achieves high accuracy, particularly in long-term simulation. Simultaneously, to address the incompatibility issue between the divergence operator acting on the magnetic vector potential A and the edge spectral element method (SEM), an auxiliary variable p=A is introduced. This adjustment allows SM equations under Lorenz gauge to be effectively discretized using mixed SEM (MSEM). Finally, the effectiveness of S-MSETD is validated through numerical simulations.
Lorenz规范下三维Schrödinger-Maxwell方程的辛混合谱元时域方法
本文利用哈密顿变分原理证明了在洛伦兹规范下Schrödinger-Maxwell (SM)方程具有辛结构。在此基础上,提出了Lorenz规范下SM方程的辛混合谱元时域法(S-MSETD)。该方法是一种保持结构的几何算法,具有较高的精度,特别是在长期仿真中。同时,为了解决作用于磁矢量势A的散度算子与边缘谱元法(SEM)不兼容的问题,引入辅助变量p=∇⋅A。这种调整使得洛伦兹规范下的SM方程可以用混合扫描电镜(MSEM)有效地离散化。最后,通过数值模拟验证了S-MSETD的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Mathematics Letters
Applied Mathematics Letters 数学-应用数学
CiteScore
7.70
自引率
5.40%
发文量
347
审稿时长
10 days
期刊介绍: The purpose of Applied Mathematics Letters is to provide a means of rapid publication for important but brief applied mathematical papers. The brief descriptions of any work involving a novel application or utilization of mathematics, or a development in the methodology of applied mathematics is a potential contribution for this journal. This journal''s focus is on applied mathematics topics based on differential equations and linear algebra. Priority will be given to submissions that are likely to appeal to a wide audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信