S. Karthik , D. Iranian , Ilyas Khan , Sultan Alshehery , Muhammad Sabaoon Khan
{"title":"Dual-layer stratification of powell eyring fluid in EMHD flow with thermal radiation and chemical reaction","authors":"S. Karthik , D. Iranian , Ilyas Khan , Sultan Alshehery , Muhammad Sabaoon Khan","doi":"10.1016/j.jrras.2025.101337","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates the influence of thermal radiation and chemical reaction parameters on the stability and behavior of Powell-Eyring fluid flow, focusing on dual stratification, multiple slip conditions, and electro-magneto-hydrodynamics (EMHD) under the effect of a magnetic field. Thermal radiation and chemical reactions significantly impact transport phenomena, altering temperature and concentration profiles within the stratified fluid layers. Dual stratification introduces variations in temperature and concentration, while multiple slip conditions at fluid-solid interfaces affect the flow and heat transfer properties. Additionally, EMHD, driven by the coupling of electric and magnetic fields with the fluid, reveals unique fluid behaviours crucial for stability and flow control. The research enhances our understanding of fluid dynamics by examining interactions between layered structures, fluid-solid interfaces, and EMHD forces. The study employs similarity transformations to reduce complex partial differential equations (PDEs) to ordinary differential equations (ODEs). Numerical simulations, conducted using MATLAB's bvp4c solver, offer detailed insights into the effects of key parameters on fluid dynamics. Results, presented through graphs and tables, highlight the impact of the Sherwood number, friction factor, and Nusselt number on mass and heat transfer properties. The investigation includes the analysis of fluid flow and heat transfer near a stretched sheet with an absorptive layer, incorporating suction, radiation, and chemical reactions alongside the influence of magnetic fields and slip conditions on EMHD. These findings are directly applicable to advanced technologies in polymer processing, microfluidics, and thermal management systems, where precise manipulation of fluid behavior through electromagnetic forces and thermal effects is critical.</div></div>","PeriodicalId":16920,"journal":{"name":"Journal of Radiation Research and Applied Sciences","volume":"18 2","pages":"Article 101337"},"PeriodicalIF":1.7000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Radiation Research and Applied Sciences","FirstCategoryId":"103","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1687850725000494","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigates the influence of thermal radiation and chemical reaction parameters on the stability and behavior of Powell-Eyring fluid flow, focusing on dual stratification, multiple slip conditions, and electro-magneto-hydrodynamics (EMHD) under the effect of a magnetic field. Thermal radiation and chemical reactions significantly impact transport phenomena, altering temperature and concentration profiles within the stratified fluid layers. Dual stratification introduces variations in temperature and concentration, while multiple slip conditions at fluid-solid interfaces affect the flow and heat transfer properties. Additionally, EMHD, driven by the coupling of electric and magnetic fields with the fluid, reveals unique fluid behaviours crucial for stability and flow control. The research enhances our understanding of fluid dynamics by examining interactions between layered structures, fluid-solid interfaces, and EMHD forces. The study employs similarity transformations to reduce complex partial differential equations (PDEs) to ordinary differential equations (ODEs). Numerical simulations, conducted using MATLAB's bvp4c solver, offer detailed insights into the effects of key parameters on fluid dynamics. Results, presented through graphs and tables, highlight the impact of the Sherwood number, friction factor, and Nusselt number on mass and heat transfer properties. The investigation includes the analysis of fluid flow and heat transfer near a stretched sheet with an absorptive layer, incorporating suction, radiation, and chemical reactions alongside the influence of magnetic fields and slip conditions on EMHD. These findings are directly applicable to advanced technologies in polymer processing, microfluidics, and thermal management systems, where precise manipulation of fluid behavior through electromagnetic forces and thermal effects is critical.
期刊介绍:
Journal of Radiation Research and Applied Sciences provides a high quality medium for the publication of substantial, original and scientific and technological papers on the development and applications of nuclear, radiation and isotopes in biology, medicine, drugs, biochemistry, microbiology, agriculture, entomology, food technology, chemistry, physics, solid states, engineering, environmental and applied sciences.