{"title":"AKT/mTOR mediated autophagy contributes to the self-replication of canine influenza virus in vivo and in vitro","authors":"Haobo Qu , Xin Yuan , Kehe Huang , Dandan Liu","doi":"10.1016/j.cellsig.2025.111648","DOIUrl":null,"url":null,"abstract":"<div><div>The prevalence and spread of canine influenza virus (CIV) pose a threat to the health of dogs and humans. Some studies have shown that autophagy is closely related to virus replication, but the exact relationship between CIV replication and autophagy is still unclear. Therefore, this study investigated the effects of autophagy on CIV replication <em>in vitro</em> and <em>in vivo</em>. The data showed that CIV infection significantly caused respiratory tract damage in mice, upregulated the mRNA/protein levels of CIV replication-related genes and autophagy-related genes. In addition, the activation of autophagy by rapamycin (Rapa) significantly intensified the CIV replication and the respiratory tract damage of mice, while the inhibition of autophagy by 3-Methyladenine (3-MA) significantly alleviated these effects. Data of MDCK cells also demonstrated that CIV promoted self-replication through activating autophagy, and the upregulation of AKT/mTOR by insulin significantly inhibited the CIV replication. In summary, this study showed that CIV could promote self-replication by activating AKT/mTOR mediated autophagy, which provides new ideas for the prevention and treatment of canine influenza.</div></div>","PeriodicalId":9902,"journal":{"name":"Cellular signalling","volume":"128 ","pages":"Article 111648"},"PeriodicalIF":4.4000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular signalling","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0898656825000610","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The prevalence and spread of canine influenza virus (CIV) pose a threat to the health of dogs and humans. Some studies have shown that autophagy is closely related to virus replication, but the exact relationship between CIV replication and autophagy is still unclear. Therefore, this study investigated the effects of autophagy on CIV replication in vitro and in vivo. The data showed that CIV infection significantly caused respiratory tract damage in mice, upregulated the mRNA/protein levels of CIV replication-related genes and autophagy-related genes. In addition, the activation of autophagy by rapamycin (Rapa) significantly intensified the CIV replication and the respiratory tract damage of mice, while the inhibition of autophagy by 3-Methyladenine (3-MA) significantly alleviated these effects. Data of MDCK cells also demonstrated that CIV promoted self-replication through activating autophagy, and the upregulation of AKT/mTOR by insulin significantly inhibited the CIV replication. In summary, this study showed that CIV could promote self-replication by activating AKT/mTOR mediated autophagy, which provides new ideas for the prevention and treatment of canine influenza.
期刊介绍:
Cellular Signalling publishes original research describing fundamental and clinical findings on the mechanisms, actions and structural components of cellular signalling systems in vitro and in vivo.
Cellular Signalling aims at full length research papers defining signalling systems ranging from microorganisms to cells, tissues and higher organisms.