Cars Hommes , Mario He , Sebastian Poledna , Melissa Siqueira , Yang Zhang
{"title":"CANVAS: A Canadian behavioral agent-based model for monetary policy","authors":"Cars Hommes , Mario He , Sebastian Poledna , Melissa Siqueira , Yang Zhang","doi":"10.1016/j.jedc.2024.104986","DOIUrl":null,"url":null,"abstract":"<div><div>We develop the Canadian behavioral Agent-Based Model (CANVAS) that complements traditional macroeconomic models for forecasting and monetary policy analysis. CANVAS represents a next-generation modeling effort featuring enhancements in three dimensions: introducing household and firm heterogeneity, departing from rational expectations, and modeling price and quantity setting heuristics within a production network. The expanded modeling capacity is achieved by harnessing large-scale Canadian micro- and macroeconomic datasets and incorporating adaptive learning and simple heuristics. The out-of-sample forecasting performance of CANVAS is found to be competitive with a benchmark vector auto-regressive (VAR) model and a DSGE model. When applied to analyze the COVID-19 pandemic episode, our model helps explain both the macroeconomic movement and the interplay between expectation formation and cost-push shocks. CANVAS is one of the first macroeconomic agent-based models applied by a central bank to support projection and alternative scenarios, marking an advancement in the toolkit of central banks and enriching monetary policy analysis.</div></div>","PeriodicalId":48314,"journal":{"name":"Journal of Economic Dynamics & Control","volume":"172 ","pages":"Article 104986"},"PeriodicalIF":1.9000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Economic Dynamics & Control","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165188924001787","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0
Abstract
We develop the Canadian behavioral Agent-Based Model (CANVAS) that complements traditional macroeconomic models for forecasting and monetary policy analysis. CANVAS represents a next-generation modeling effort featuring enhancements in three dimensions: introducing household and firm heterogeneity, departing from rational expectations, and modeling price and quantity setting heuristics within a production network. The expanded modeling capacity is achieved by harnessing large-scale Canadian micro- and macroeconomic datasets and incorporating adaptive learning and simple heuristics. The out-of-sample forecasting performance of CANVAS is found to be competitive with a benchmark vector auto-regressive (VAR) model and a DSGE model. When applied to analyze the COVID-19 pandemic episode, our model helps explain both the macroeconomic movement and the interplay between expectation formation and cost-push shocks. CANVAS is one of the first macroeconomic agent-based models applied by a central bank to support projection and alternative scenarios, marking an advancement in the toolkit of central banks and enriching monetary policy analysis.
期刊介绍:
The journal provides an outlet for publication of research concerning all theoretical and empirical aspects of economic dynamics and control as well as the development and use of computational methods in economics and finance. Contributions regarding computational methods may include, but are not restricted to, artificial intelligence, databases, decision support systems, genetic algorithms, modelling languages, neural networks, numerical algorithms for optimization, control and equilibria, parallel computing and qualitative reasoning.