{"title":"The significance of the activating transcription factor 6 gene in the pathogenesis of drug resistant cancer","authors":"Ashkan Khanishayan , Soheila Rahgozar , Diba Zebardast","doi":"10.1016/j.tice.2025.102786","DOIUrl":null,"url":null,"abstract":"<div><div>Chemotherapy remains a cornerstone in cancer therapy, but its effectiveness is often hindered by the development of drug resistance, a significant factor contributing to over 90 % of cancer-related deaths worldwide. A critical aspect of this resistance involves chronic endoplasmic reticulum stress, which activates the unfolded protein response (UPR), mainly through the activation of Activating Transcription Factor 6 (ATF6). Elevated ATF6 expression has been found to correlate with poor survival outcomes and increased resistance to chemotherapy across several malignancies. This study specifically investigates the role of ATF6 in cancer pathogenesis, focusing on its involvement in resistance mechanisms and the progression of the disease. Given the complex interactions between the UPR and other cellular pathways, including the DNA damage response (DDR), our findings emphasize the potential of targeting ATF6 and UPR and DDR pathways as a novel therapeutic strategy. This approach could potentially overcome chemoresistance and improve outcomes in cancer treatment.</div></div>","PeriodicalId":23201,"journal":{"name":"Tissue & cell","volume":"93 ","pages":"Article 102786"},"PeriodicalIF":2.7000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tissue & cell","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0040816625000667","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ANATOMY & MORPHOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Chemotherapy remains a cornerstone in cancer therapy, but its effectiveness is often hindered by the development of drug resistance, a significant factor contributing to over 90 % of cancer-related deaths worldwide. A critical aspect of this resistance involves chronic endoplasmic reticulum stress, which activates the unfolded protein response (UPR), mainly through the activation of Activating Transcription Factor 6 (ATF6). Elevated ATF6 expression has been found to correlate with poor survival outcomes and increased resistance to chemotherapy across several malignancies. This study specifically investigates the role of ATF6 in cancer pathogenesis, focusing on its involvement in resistance mechanisms and the progression of the disease. Given the complex interactions between the UPR and other cellular pathways, including the DNA damage response (DDR), our findings emphasize the potential of targeting ATF6 and UPR and DDR pathways as a novel therapeutic strategy. This approach could potentially overcome chemoresistance and improve outcomes in cancer treatment.
期刊介绍:
Tissue and Cell is devoted to original research on the organization of cells, subcellular and extracellular components at all levels, including the grouping and interrelations of cells in tissues and organs. The journal encourages submission of ultrastructural studies that provide novel insights into structure, function and physiology of cells and tissues, in health and disease. Bioengineering and stem cells studies focused on the description of morphological and/or histological data are also welcomed.
Studies investigating the effect of compounds and/or substances on structure of cells and tissues are generally outside the scope of this journal. For consideration, studies should contain a clear rationale on the use of (a) given substance(s), have a compelling morphological and structural focus and present novel incremental findings from previous literature.