Regulation of FOXM1 by HDAC3 Inhibition Ameliorates Macrophage Endoplasmic Reticulum stress and Apoptosis in Mycobacterium tuberculosis Infection

IF 2.5 4区 医学 Q3 IMMUNOLOGY
Jinqi Hao, Lan Zhang, Jiafu Qi, Yanqin Yu
{"title":"Regulation of FOXM1 by HDAC3 Inhibition Ameliorates Macrophage Endoplasmic Reticulum stress and Apoptosis in Mycobacterium tuberculosis Infection","authors":"Jinqi Hao,&nbsp;Lan Zhang,&nbsp;Jiafu Qi,&nbsp;Yanqin Yu","doi":"10.1016/j.imbio.2025.152879","DOIUrl":null,"url":null,"abstract":"<div><div><em>Mycobacterium tuberculosis</em> (Mtb) infection may induce significant damage to the host lung tissues. Endoplasmic reticulum stress (ERS) and apoptosis of macrophages are considered key factors affecting the survival and pathogenicity of intracellular Mtb. Forkhead box M1 (FOXM1) is closely implicated in lung diseases. This study aimed to investigate the role of FOXM1 in Mtb infection and the involvement of histone deacetylase 3 (HDAC3) in this process. An in vitro Mtb infection model was established by infecting RAW264.7 macrophages with Mtb H37Ra. The results showed that RAW264.7 macrophages subjected to Mtb infection showed upregulated expressions of ERS markers and FOXM1. FOXM1 overexpression further elevated the levels of ERS and apoptosis markers, pro-inflammatory cytokines, and reactive oxygen species in Mtb-infected macrophages. FOXM1 could bind to the promoter of <em>TXNIP</em> and activate its transcription. Knockdown of TXNIP suppressed the effects of Mtb infection on macrophages, while upregulation of FOXM1 completely abolished the effects of TXNIP knockdown. HDAC3 inhibitor effectively diminished the effects of FOXM1 upregulation on Mtb-infected macrophages. In conclusion, inhibition of HDAC3 may reduce ERS and apoptosis of Mtb-infected macrophages by regulating the FOXM1/TXNIP axis.</div></div>","PeriodicalId":13270,"journal":{"name":"Immunobiology","volume":"230 2","pages":"Article 152879"},"PeriodicalIF":2.5000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Immunobiology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0171298525000130","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Mycobacterium tuberculosis (Mtb) infection may induce significant damage to the host lung tissues. Endoplasmic reticulum stress (ERS) and apoptosis of macrophages are considered key factors affecting the survival and pathogenicity of intracellular Mtb. Forkhead box M1 (FOXM1) is closely implicated in lung diseases. This study aimed to investigate the role of FOXM1 in Mtb infection and the involvement of histone deacetylase 3 (HDAC3) in this process. An in vitro Mtb infection model was established by infecting RAW264.7 macrophages with Mtb H37Ra. The results showed that RAW264.7 macrophages subjected to Mtb infection showed upregulated expressions of ERS markers and FOXM1. FOXM1 overexpression further elevated the levels of ERS and apoptosis markers, pro-inflammatory cytokines, and reactive oxygen species in Mtb-infected macrophages. FOXM1 could bind to the promoter of TXNIP and activate its transcription. Knockdown of TXNIP suppressed the effects of Mtb infection on macrophages, while upregulation of FOXM1 completely abolished the effects of TXNIP knockdown. HDAC3 inhibitor effectively diminished the effects of FOXM1 upregulation on Mtb-infected macrophages. In conclusion, inhibition of HDAC3 may reduce ERS and apoptosis of Mtb-infected macrophages by regulating the FOXM1/TXNIP axis.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Immunobiology
Immunobiology 医学-免疫学
CiteScore
5.00
自引率
3.60%
发文量
108
审稿时长
55 days
期刊介绍: Immunobiology is a peer-reviewed journal that publishes highly innovative research approaches for a wide range of immunological subjects, including • Innate Immunity, • Adaptive Immunity, • Complement Biology, • Macrophage and Dendritic Cell Biology, • Parasite Immunology, • Tumour Immunology, • Clinical Immunology, • Immunogenetics, • Immunotherapy and • Immunopathology of infectious, allergic and autoimmune disease.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信