Uncovering the latent structure of human time perception

IF 2.8 1区 心理学 Q1 PSYCHOLOGY, EXPERIMENTAL
Renata Sadibolova , Curtis Widmer , Zoe Fletcher , Soraya Weill , Devin B. Terhune
{"title":"Uncovering the latent structure of human time perception","authors":"Renata Sadibolova ,&nbsp;Curtis Widmer ,&nbsp;Zoe Fletcher ,&nbsp;Soraya Weill ,&nbsp;Devin B. Terhune","doi":"10.1016/j.cognition.2025.106078","DOIUrl":null,"url":null,"abstract":"<div><div>One of the ongoing controversies in interval timing concerns whether human time perception relies on multiple distinct mechanisms. This debate centres around whether subsecond and suprasecond timing may be attributed to a single semi-uniform timing system or separate and interacting cognitive systems. Whereas past studies offer valuable insights, this study overcomes previous limitations by adopting multiple convergent statistical approaches in a design with strong statistical power. We conducted two online experiments involving participants reproducing temporal intervals ranging from 400 to 2400 ms (Experiment 1; <em>N</em> = 302) and 1000 to 2000 ms (Experiment 2; <em>N</em> = 302). We contrasted the application of exploratory factor analysis and structural equation modelling to differentiate distinct latent structures underlying duration reproduction patterns. Additionally, we compared the model outcomes with results from changepoint analysis models fitted to individual participants' data. In both experiments, these analyses yielded evidence for a two-factor model comprising a general timing factor spanning the full interval range and a second factor capturing the regression to the mean of presented stimulus intervals (central tendency bias). We observed a low proportion of detected changepoints, further supporting the limited evidence for a hypothesized discontinuity between distinct underlying systems, while also finding that changepoint detection patterns were predicted by latent factor scores. These results suggest that the central tendency bias should be considered when investigating potential discontinuities in interval timing systems. Our work contributes to the integration of factor analytic and computational modelling approaches in the study of time perception and has implications for the measurement and interpretation of interval timing in a range of contexts.</div></div>","PeriodicalId":48455,"journal":{"name":"Cognition","volume":"257 ","pages":"Article 106078"},"PeriodicalIF":2.8000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognition","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010027725000186","RegionNum":1,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PSYCHOLOGY, EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

One of the ongoing controversies in interval timing concerns whether human time perception relies on multiple distinct mechanisms. This debate centres around whether subsecond and suprasecond timing may be attributed to a single semi-uniform timing system or separate and interacting cognitive systems. Whereas past studies offer valuable insights, this study overcomes previous limitations by adopting multiple convergent statistical approaches in a design with strong statistical power. We conducted two online experiments involving participants reproducing temporal intervals ranging from 400 to 2400 ms (Experiment 1; N = 302) and 1000 to 2000 ms (Experiment 2; N = 302). We contrasted the application of exploratory factor analysis and structural equation modelling to differentiate distinct latent structures underlying duration reproduction patterns. Additionally, we compared the model outcomes with results from changepoint analysis models fitted to individual participants' data. In both experiments, these analyses yielded evidence for a two-factor model comprising a general timing factor spanning the full interval range and a second factor capturing the regression to the mean of presented stimulus intervals (central tendency bias). We observed a low proportion of detected changepoints, further supporting the limited evidence for a hypothesized discontinuity between distinct underlying systems, while also finding that changepoint detection patterns were predicted by latent factor scores. These results suggest that the central tendency bias should be considered when investigating potential discontinuities in interval timing systems. Our work contributes to the integration of factor analytic and computational modelling approaches in the study of time perception and has implications for the measurement and interpretation of interval timing in a range of contexts.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cognition
Cognition PSYCHOLOGY, EXPERIMENTAL-
CiteScore
6.40
自引率
5.90%
发文量
283
期刊介绍: Cognition is an international journal that publishes theoretical and experimental papers on the study of the mind. It covers a wide variety of subjects concerning all the different aspects of cognition, ranging from biological and experimental studies to formal analysis. Contributions from the fields of psychology, neuroscience, linguistics, computer science, mathematics, ethology and philosophy are welcome in this journal provided that they have some bearing on the functioning of the mind. In addition, the journal serves as a forum for discussion of social and political aspects of cognitive science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信