Structural characteristics, biotechnological production and applications of exopolysaccharides from Bacillus sp.: A comprehensive review

IF 10.7 1区 化学 Q1 CHEMISTRY, APPLIED
Xiaolong Yang, Yufei Mao, Lan Chen, Xiong Guan, Zixuan Wang, Tianpei Huang
{"title":"Structural characteristics, biotechnological production and applications of exopolysaccharides from Bacillus sp.: A comprehensive review","authors":"Xiaolong Yang,&nbsp;Yufei Mao,&nbsp;Lan Chen,&nbsp;Xiong Guan,&nbsp;Zixuan Wang,&nbsp;Tianpei Huang","doi":"10.1016/j.carbpol.2025.123363","DOIUrl":null,"url":null,"abstract":"<div><div>Exopolysaccharides (EPS) produced by <em>Bacillus</em> species display various biological activities and characteristics such as anti-oxidant, immunomodulatory, anti-bacterial, and bioadhesive effects. These attributes confer <em>Bacillus</em> species broad potential applications in diverse fields such as food, medicine, environment, and agriculture. Moreover, <em>Bacillus</em>-derived EPS are easier to produce and yield higher quantities than plant-derived polysaccharides. Despite these advantages, <em>Bacillus</em>-derived EPS still encounter numerous obstacles in industrial production and commercial applications, including elevated costs, the absence of mature fermentation tank production procedures, and the lack of systematic in vivo and in vitro activity and metabolic evaluation. Therefore, it is essential to gain insight into the current status of structure, production, and applications of <em>Bacillus</em>-derived EPS for facilitating their future broader application. This paper provides a comprehensive overview of the current research on the production, separation, characteristics and applications of these related biological products. Furthermore, this paper summarizes the current challenges impeding industrial production of <em>Bacillus</em>-derived EPS, along with potential solutions, and their prospective applications in enhancing the attributes of beneficial biofilms, laying a solid scientific foundation for the applications of <em>Bacillus</em>-derived EPS in industry and agriculture.</div></div>","PeriodicalId":261,"journal":{"name":"Carbohydrate Polymers","volume":"355 ","pages":"Article 123363"},"PeriodicalIF":10.7000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbohydrate Polymers","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0144861725001444","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Exopolysaccharides (EPS) produced by Bacillus species display various biological activities and characteristics such as anti-oxidant, immunomodulatory, anti-bacterial, and bioadhesive effects. These attributes confer Bacillus species broad potential applications in diverse fields such as food, medicine, environment, and agriculture. Moreover, Bacillus-derived EPS are easier to produce and yield higher quantities than plant-derived polysaccharides. Despite these advantages, Bacillus-derived EPS still encounter numerous obstacles in industrial production and commercial applications, including elevated costs, the absence of mature fermentation tank production procedures, and the lack of systematic in vivo and in vitro activity and metabolic evaluation. Therefore, it is essential to gain insight into the current status of structure, production, and applications of Bacillus-derived EPS for facilitating their future broader application. This paper provides a comprehensive overview of the current research on the production, separation, characteristics and applications of these related biological products. Furthermore, this paper summarizes the current challenges impeding industrial production of Bacillus-derived EPS, along with potential solutions, and their prospective applications in enhancing the attributes of beneficial biofilms, laying a solid scientific foundation for the applications of Bacillus-derived EPS in industry and agriculture.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Carbohydrate Polymers
Carbohydrate Polymers 化学-高分子科学
CiteScore
22.40
自引率
8.00%
发文量
1286
审稿时长
47 days
期刊介绍: Carbohydrate Polymers stands as a prominent journal in the glycoscience field, dedicated to exploring and harnessing the potential of polysaccharides with applications spanning bioenergy, bioplastics, biomaterials, biorefining, chemistry, drug delivery, food, health, nanotechnology, packaging, paper, pharmaceuticals, medicine, oil recovery, textiles, tissue engineering, wood, and various aspects of glycoscience. The journal emphasizes the central role of well-characterized carbohydrate polymers, highlighting their significance as the primary focus rather than a peripheral topic. Each paper must prominently feature at least one named carbohydrate polymer, evident in both citation and title, with a commitment to innovative research that advances scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信