Lyly Hui Ting Leow, Hong Tho Le and Atsushi Goto*,
{"title":"Dual Temperature- and pH-Responsive Layered Hydrogels Synthesized via Halogen Bond-Based Solid Phase Radical Polymerization","authors":"Lyly Hui Ting Leow, Hong Tho Le and Atsushi Goto*, ","doi":"10.1021/acsami.4c2191910.1021/acsami.4c21919","DOIUrl":null,"url":null,"abstract":"<p >Stimuli-responsive shape-changing layered hydrogels were, for the first time, prepared via solid-phase polymerization, where halogen bond-based solid-phase radical polymerization was utilized. Monomer cocrystals were assembled to form predetermined layered structures before polymerization, and all layers are polymerized at one time. AB bilayer and ABA and ABC trilayer hydrogel sheets that consisted of temperature- and pH-responsive layers were prepared. The obtained layered sheets were responsive to temperature and pH in dual manners at relatively wide ranges of temperature (5–65 °C) and pH (2.0–11.0). The bilayer sheets exhibited bending upon stimuli. The bending angle was tunable, and the bending direction (negative and positive directions) was also switchable in response to temperature and pH. The trilayer sheets exhibited switchable concave, trapezoid, and convex shape changes with modulated angles, which were unprecedented shape changes. Because of the ease of operation and wide monomer scope (using radical polymerization and halogen bonding), the present method offers a facile and versatile approach to fabricate stimuli-responsive shape-changing hydrogel materials.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"17 6","pages":"9960–9970 9960–9970"},"PeriodicalIF":8.2000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsami.4c21919","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Stimuli-responsive shape-changing layered hydrogels were, for the first time, prepared via solid-phase polymerization, where halogen bond-based solid-phase radical polymerization was utilized. Monomer cocrystals were assembled to form predetermined layered structures before polymerization, and all layers are polymerized at one time. AB bilayer and ABA and ABC trilayer hydrogel sheets that consisted of temperature- and pH-responsive layers were prepared. The obtained layered sheets were responsive to temperature and pH in dual manners at relatively wide ranges of temperature (5–65 °C) and pH (2.0–11.0). The bilayer sheets exhibited bending upon stimuli. The bending angle was tunable, and the bending direction (negative and positive directions) was also switchable in response to temperature and pH. The trilayer sheets exhibited switchable concave, trapezoid, and convex shape changes with modulated angles, which were unprecedented shape changes. Because of the ease of operation and wide monomer scope (using radical polymerization and halogen bonding), the present method offers a facile and versatile approach to fabricate stimuli-responsive shape-changing hydrogel materials.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.