Robust Nanoscale Anode Protective Layers toward Fast-Charge High-Energy-Density Lithium Metal Batteries

IF 27.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Chuanfa Li, Yin Cui, Shenghao Lin, Pengwei Ma, Yiwei Ji, Zongheng Cen, Guofang Yu, Shimei Li, Shaohong Liu, Dingcai Wu
{"title":"Robust Nanoscale Anode Protective Layers toward Fast-Charge High-Energy-Density Lithium Metal Batteries","authors":"Chuanfa Li,&nbsp;Yin Cui,&nbsp;Shenghao Lin,&nbsp;Pengwei Ma,&nbsp;Yiwei Ji,&nbsp;Zongheng Cen,&nbsp;Guofang Yu,&nbsp;Shimei Li,&nbsp;Shaohong Liu,&nbsp;Dingcai Wu","doi":"10.1002/adma.202416377","DOIUrl":null,"url":null,"abstract":"<p>Mechanically stable and structurally homogeneous lithium–electrolyte interfacial layers are crucial in stabilizing lithium (Li) anodes for practical Li metal batteries. Herein, an ultrathin (≈84 nm) and robust artificial protective layer is constructed with reactive two-dimensional (2D) molecular brushes as building blocks. The artificial protective layer can in situ react with underlying Li metal to produce a nanoscale poly(lithium styrenesulfonate)-grafted graphene oxide (GO-<i>g</i>-PSSLi) layer on the outermost surface and an infinite Li–Ag solid solution in the anode. The nanoscale GO-<i>g</i>-PSSLi layer well integrates a large number of single Li-ion conducting PSSLi chains and 2D robust GO backbones, thereby enabling molecular-level homogeneous and fast Li-ion diffusion as well as remarkable mechanical strength. Meanwhile, the simultaneously formed Li–Ag solid solution is beneficial for rapid Li transport in the anode to reduce the Li nucleation barrier and facilitate homogeneous deposition of Li. With such artificial protective layers, a prototype pouch cell with a thin Li metal anode (50 µm) and a high-loading cathode (21.6 mg cm<sup>−2</sup>) delivers an impressive cycle life of over 350 cycles with 69% capacity retention under harsh conditions. Remarkably, ultrahigh charging power density of 456 W kg<sup>−1</sup> and energy density of 325 Wh kg<sup>−1</sup> can be simultaneously achieved in an Ah-level pouch cell.</p>","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"37 11","pages":""},"PeriodicalIF":27.4000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adma.202416377","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Mechanically stable and structurally homogeneous lithium–electrolyte interfacial layers are crucial in stabilizing lithium (Li) anodes for practical Li metal batteries. Herein, an ultrathin (≈84 nm) and robust artificial protective layer is constructed with reactive two-dimensional (2D) molecular brushes as building blocks. The artificial protective layer can in situ react with underlying Li metal to produce a nanoscale poly(lithium styrenesulfonate)-grafted graphene oxide (GO-g-PSSLi) layer on the outermost surface and an infinite Li–Ag solid solution in the anode. The nanoscale GO-g-PSSLi layer well integrates a large number of single Li-ion conducting PSSLi chains and 2D robust GO backbones, thereby enabling molecular-level homogeneous and fast Li-ion diffusion as well as remarkable mechanical strength. Meanwhile, the simultaneously formed Li–Ag solid solution is beneficial for rapid Li transport in the anode to reduce the Li nucleation barrier and facilitate homogeneous deposition of Li. With such artificial protective layers, a prototype pouch cell with a thin Li metal anode (50 µm) and a high-loading cathode (21.6 mg cm−2) delivers an impressive cycle life of over 350 cycles with 69% capacity retention under harsh conditions. Remarkably, ultrahigh charging power density of 456 W kg−1 and energy density of 325 Wh kg−1 can be simultaneously achieved in an Ah-level pouch cell.

Abstract Image

快速充电高能量密度锂金属电池的坚固奈米阳极保护层
机械稳定且结构均匀的锂电解液界面层是稳定锂金属电池阳极的关键。本文以活性二维(2D)分子刷作为构建块,构建了超薄(≈84 nm)且坚固的人工保护层。人工保护层可以与下伏的锂金属原位反应,在最外层形成纳米级聚苯乙烯磺酸锂接枝氧化石墨烯(GO-g-PSSLi)层,在阳极形成无限的Li - ag固溶体。纳米级的GO-g-PSSLi层很好地集成了大量的单锂离子导电PSSLi链和二维强健的GO骨架,从而实现了分子水平的均匀和快速的锂离子扩散,并具有显著的机械强度。同时,同时形成的Li - ag固溶体有利于Li在阳极内的快速迁移,降低了Li的成核屏障,有利于Li的均匀沉积。有了这样的人工保护层,具有薄锂金属阳极(50 μ m)和高负载阴极(21.6 mg cm - 2)的原型袋电池在恶劣条件下提供了超过350次循环的令人印象深刻的循环寿命,容量保持率为69%。值得注意的是,在ah级袋状电池中可以同时实现456 W kg - 1的超高充电功率密度和325 Wh kg - 1的能量密度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信