Wireless Thermochromic Platform Based on Au/SiO2 Photonic Crystals for Operando Monitoring of Catalyst Sintering with Machine Learning

IF 15.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ACS Nano Pub Date : 2025-02-10 DOI:10.1021/acsnano.4c18155
Mingyu Tang, Bingbing Song, Yajie Kong, Rui Wang, Shujing Li, Wanlin Fu, Wu Yang, Weibing Lu, Yueming Sun, Yunqian Dai
{"title":"Wireless Thermochromic Platform Based on Au/SiO2 Photonic Crystals for Operando Monitoring of Catalyst Sintering with Machine Learning","authors":"Mingyu Tang, Bingbing Song, Yajie Kong, Rui Wang, Shujing Li, Wanlin Fu, Wu Yang, Weibing Lu, Yueming Sun, Yunqian Dai","doi":"10.1021/acsnano.4c18155","DOIUrl":null,"url":null,"abstract":"<i>Operando</i> monitoring of the catalyst sinter-degree during reactions is essential for achieving a stable, safe, and efficient chemical engineering process. This work introduces a wireless thermochromic platform that utilizes machine learning to correlate color changes with the sinter-degree of catalysts and to identify hot spots during chemical reactions. After being decorated with sub-2 nm Au clusters, SiO<sub>2</sub> photonic crystals were endowed with a distinct color change from the inherent blue hue of SiO<sub>2</sub> photonic crystals to the distinctive red shade associated with Au clusters, due to the gradual growth of Au clusters over a wide temperature range from 25 to 900 °C. With the assistance of an artificial neural network, a robust correlation was established between the observed color change and the sinter-degree of Au species. After training, the smart Au/SiO<sub>2</sub> catalyst achieved self-visualization for the sinter-degree of Au species within 12.4 μm × 12.4 μm, during CO oxidation. Moreover, an intelligent noninvasive platform can be constructed by patterning Au/SiO<sub>2</sub> photonic crystals into quick response codes, for real-time monitoring of temperature distribution at a micro-region scale (208 μm × 208 μm) within 5 ms during chemical reactions. The Au/SiO<sub>2</sub> thermochromic platform enables wireless data transmission and facilitates the programmable warning of abnormal hot spots in reactors. This work serves as a technical reserve for future research on the development of advanced catalysts and offers further insight into the chemical engineering process.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"9 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c18155","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Operando monitoring of the catalyst sinter-degree during reactions is essential for achieving a stable, safe, and efficient chemical engineering process. This work introduces a wireless thermochromic platform that utilizes machine learning to correlate color changes with the sinter-degree of catalysts and to identify hot spots during chemical reactions. After being decorated with sub-2 nm Au clusters, SiO2 photonic crystals were endowed with a distinct color change from the inherent blue hue of SiO2 photonic crystals to the distinctive red shade associated with Au clusters, due to the gradual growth of Au clusters over a wide temperature range from 25 to 900 °C. With the assistance of an artificial neural network, a robust correlation was established between the observed color change and the sinter-degree of Au species. After training, the smart Au/SiO2 catalyst achieved self-visualization for the sinter-degree of Au species within 12.4 μm × 12.4 μm, during CO oxidation. Moreover, an intelligent noninvasive platform can be constructed by patterning Au/SiO2 photonic crystals into quick response codes, for real-time monitoring of temperature distribution at a micro-region scale (208 μm × 208 μm) within 5 ms during chemical reactions. The Au/SiO2 thermochromic platform enables wireless data transmission and facilitates the programmable warning of abnormal hot spots in reactors. This work serves as a technical reserve for future research on the development of advanced catalysts and offers further insight into the chemical engineering process.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信