Drying-rewetting cycles decrease temperature sensitivity of soil organic matter decomposition

IF 5.6 1区 农林科学 Q1 AGRONOMY
Junjie Lin, Wenling Zhang, Amit Kumar, Dafeng Hui, Changai Zhang, Shengdao Shan, Zhiguo Yu, Biao Zhu, Yakov Kuzyakov
{"title":"Drying-rewetting cycles decrease temperature sensitivity of soil organic matter decomposition","authors":"Junjie Lin, Wenling Zhang, Amit Kumar, Dafeng Hui, Changai Zhang, Shengdao Shan, Zhiguo Yu, Biao Zhu, Yakov Kuzyakov","doi":"10.1016/j.agrformet.2025.110442","DOIUrl":null,"url":null,"abstract":"Soil organic carbon (SOC) decomposition is crucial in the global carbon cycle. Its sensitivity to warming significantly impacts climate change. However, the effect of soil drying-rewetting, a consequence of climate change-induced water cycling shifts, on SOC decomposition sensitivity remains poorly understood. This study investigated how drying-rewetting cycles affect the temperature sensitivity (Q<sub>10</sub>) of SOC decomposition and its underlying mechanisms. We collected soils from two farmlands with 23- and 33-year C<sub>3</sub><img alt=\"single bond\" src=\"https://sdfestaticassets-us-east-1.sciencedirectassets.com/shared-assets/55/entities/sbnd.gif\" style=\"vertical-align:middle\"/>C<sub>4</sub> vegetation switches The soils were incubated at 20 °C or 30 °C for 180 days under alternate drying-rewetting cycles (100 %−20 % water holding capacity, WHC) or constant moisture (60 % WHC). Using <sup>13</sup>C natural abundance, we differentiated CO<sub>2</sub> sources from recent SOC (C<sub>4</sub>, &lt;23 or &lt;33 years) and old SOC (C<sub>3</sub>, &gt;23 or &gt;33 years). Results showed that warming and drying-rewetting enhanced total SOC decomposition. Across moisture conditions, the Q<sub>10</sub> of old SOC was 0.25−0.40 units higher than that of recent SOC. Six drying-rewetting cycles decreased the Q<sub>10</sub> of total, recent, and old SOC by 0.30−0.44 units compared to constant moisture, as warming became less dominant during the drying-rewetting process. This indicates that the commonly used Q<sub>10</sub> might be overestimated under constant moisture, suggesting that the feedback of SOC pools to climate warming might be weaker than previously expected under real soil moisture fluctuations.","PeriodicalId":50839,"journal":{"name":"Agricultural and Forest Meteorology","volume":"27 1","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agricultural and Forest Meteorology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1016/j.agrformet.2025.110442","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

Abstract

Soil organic carbon (SOC) decomposition is crucial in the global carbon cycle. Its sensitivity to warming significantly impacts climate change. However, the effect of soil drying-rewetting, a consequence of climate change-induced water cycling shifts, on SOC decomposition sensitivity remains poorly understood. This study investigated how drying-rewetting cycles affect the temperature sensitivity (Q10) of SOC decomposition and its underlying mechanisms. We collected soils from two farmlands with 23- and 33-year C3Abstract ImageC4 vegetation switches The soils were incubated at 20 °C or 30 °C for 180 days under alternate drying-rewetting cycles (100 %−20 % water holding capacity, WHC) or constant moisture (60 % WHC). Using 13C natural abundance, we differentiated CO2 sources from recent SOC (C4, <23 or <33 years) and old SOC (C3, >23 or >33 years). Results showed that warming and drying-rewetting enhanced total SOC decomposition. Across moisture conditions, the Q10 of old SOC was 0.25−0.40 units higher than that of recent SOC. Six drying-rewetting cycles decreased the Q10 of total, recent, and old SOC by 0.30−0.44 units compared to constant moisture, as warming became less dominant during the drying-rewetting process. This indicates that the commonly used Q10 might be overestimated under constant moisture, suggesting that the feedback of SOC pools to climate warming might be weaker than previously expected under real soil moisture fluctuations.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
10.30
自引率
9.70%
发文量
415
审稿时长
69 days
期刊介绍: Agricultural and Forest Meteorology is an international journal for the publication of original articles and reviews on the inter-relationship between meteorology, agriculture, forestry, and natural ecosystems. Emphasis is on basic and applied scientific research relevant to practical problems in the field of plant and soil sciences, ecology and biogeochemistry as affected by weather as well as climate variability and change. Theoretical models should be tested against experimental data. Articles must appeal to an international audience. Special issues devoted to single topics are also published. Typical topics include canopy micrometeorology (e.g. canopy radiation transfer, turbulence near the ground, evapotranspiration, energy balance, fluxes of trace gases), micrometeorological instrumentation (e.g., sensors for trace gases, flux measurement instruments, radiation measurement techniques), aerobiology (e.g. the dispersion of pollen, spores, insects and pesticides), biometeorology (e.g. the effect of weather and climate on plant distribution, crop yield, water-use efficiency, and plant phenology), forest-fire/weather interactions, and feedbacks from vegetation to weather and the climate system.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信