MADS-domain transcription factor AGAMOUS LIKE-9 participates in the gibberellin pathway to promote bud dormancy release of tree peony

IF 8.7 1区 农林科学 Q1 Agricultural and Biological Sciences
Niu Demei, Liu Fang, Gao Linqiang, Zhang Huailong, Liu Naibin, Zhang Lu, Yuan Yanchao, Liu Chunying, Gai Shupeng, Zhang Yuxi
{"title":"MADS-domain transcription factor AGAMOUS LIKE-9 participates in the gibberellin pathway to promote bud dormancy release of tree peony","authors":"Niu Demei, Liu Fang, Gao Linqiang, Zhang Huailong, Liu Naibin, Zhang Lu, Yuan Yanchao, Liu Chunying, Gai Shupeng, Zhang Yuxi","doi":"10.1093/hr/uhaf043","DOIUrl":null,"url":null,"abstract":"Bud dormancy, which serves as a survival mechanism during winter, is crucial for determining the timing and quality of flowering in many perennial woody plants, including tree peony. The gibberellin (GA) signalling pathway participates in breaking bud dormancy in tree peony. Specifically, PsRGL1, a key DELLA protein, is a negative regulator in this process. MADS-box family members participate in plant growth and development regulation. In this study, a MADS-domain transcription factor, AGAMOUS-LIKE 9 (PsAGL9), was identified as a candidate interaction protein of PsRGL1 using a pull-down assay coupled with liquid chromatography-tandem mass spectrometry. PsAGL9 expression was induced by chilling and exogenous GA3. Yeast two-hybrid (Y2H), pull-down, and luciferase complementation assays (LCAs) confirmed that PsAGL9 interacted with PsRGL1. PsAGL9 overexpression significantly promoted dormancy break and upregulated the expression of marker genes such as PsBG6, PsBG9, PsEBB1, PsEBB3, and PsCYCD, suggesting a potential regulatory function of PsAGL9. Classical and non-classical CArG motifs were identified in the promoter regions of PsCYCD and PsEBB3, respectively. Yeast one-hybrid, electrophoretic mobility shift, and dual luciferase assays confirmed that PsAGL9 directly bound to and activated PsCYCD and PsEBB3 expression, and PsRGL1 abolished the DNA-binding activity of PsAGL9. Furthermore, interaction proteins of PsAGL9 were screened, and MADS-box members PsAGL9, PsAGL6, and PsPI were identified. Y2H, LCA, and pull-down assays confirmed that PsAGL9 formed both homodimers and heterodimers, and heterodimers further promoted target gene expression. This study provides an in-depth exploration of the GA pathway and elucidates a novel pathway, PsRGL1-PsAGL9-PsCYCD, involved in regulating dormancy break in tree peony.","PeriodicalId":13179,"journal":{"name":"Horticulture Research","volume":"167 1","pages":""},"PeriodicalIF":8.7000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Horticulture Research","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1093/hr/uhaf043","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

Bud dormancy, which serves as a survival mechanism during winter, is crucial for determining the timing and quality of flowering in many perennial woody plants, including tree peony. The gibberellin (GA) signalling pathway participates in breaking bud dormancy in tree peony. Specifically, PsRGL1, a key DELLA protein, is a negative regulator in this process. MADS-box family members participate in plant growth and development regulation. In this study, a MADS-domain transcription factor, AGAMOUS-LIKE 9 (PsAGL9), was identified as a candidate interaction protein of PsRGL1 using a pull-down assay coupled with liquid chromatography-tandem mass spectrometry. PsAGL9 expression was induced by chilling and exogenous GA3. Yeast two-hybrid (Y2H), pull-down, and luciferase complementation assays (LCAs) confirmed that PsAGL9 interacted with PsRGL1. PsAGL9 overexpression significantly promoted dormancy break and upregulated the expression of marker genes such as PsBG6, PsBG9, PsEBB1, PsEBB3, and PsCYCD, suggesting a potential regulatory function of PsAGL9. Classical and non-classical CArG motifs were identified in the promoter regions of PsCYCD and PsEBB3, respectively. Yeast one-hybrid, electrophoretic mobility shift, and dual luciferase assays confirmed that PsAGL9 directly bound to and activated PsCYCD and PsEBB3 expression, and PsRGL1 abolished the DNA-binding activity of PsAGL9. Furthermore, interaction proteins of PsAGL9 were screened, and MADS-box members PsAGL9, PsAGL6, and PsPI were identified. Y2H, LCA, and pull-down assays confirmed that PsAGL9 formed both homodimers and heterodimers, and heterodimers further promoted target gene expression. This study provides an in-depth exploration of the GA pathway and elucidates a novel pathway, PsRGL1-PsAGL9-PsCYCD, involved in regulating dormancy break in tree peony.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Horticulture Research
Horticulture Research Biochemistry, Genetics and Molecular Biology-Biochemistry
CiteScore
11.20
自引率
6.90%
发文量
367
审稿时长
20 weeks
期刊介绍: Horticulture Research, an open access journal affiliated with Nanjing Agricultural University, has achieved the prestigious ranking of number one in the Horticulture category of the Journal Citation Reports ™ from Clarivate, 2022. As a leading publication in the field, the journal is dedicated to disseminating original research articles, comprehensive reviews, insightful perspectives, thought-provoking comments, and valuable correspondence articles and letters to the editor. Its scope encompasses all vital aspects of horticultural plants and disciplines, such as biotechnology, breeding, cellular and molecular biology, evolution, genetics, inter-species interactions, physiology, and the origination and domestication of crops.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信