Min Li, Mariam Maisuradze, Zulkarnaen Paputungan, Reinhard Denecke, Jasper Rikkert Plaisier, Giuliana Aquilanti, Giovanni Agostini, Marco Giorgetti
{"title":"Excess of Zn to Relieve the Structural Distortion of Manganese Hexacyanoferrate in Aqueous Zn-ion Battery","authors":"Min Li, Mariam Maisuradze, Zulkarnaen Paputungan, Reinhard Denecke, Jasper Rikkert Plaisier, Giuliana Aquilanti, Giovanni Agostini, Marco Giorgetti","doi":"10.1039/d4ta08889a","DOIUrl":null,"url":null,"abstract":"The electrochemical performances and reaction mechanism of manganese hexacyanoferrate (MnHCF) in aqueous rechargeable Zn-ion batteries (AZIBs) have been widely studied. Due to the irreversible intercalation of Zn2+, a consistent compositional and structural change of MnHCF has been reported. In this article, a series of (3%, 10% and 35%) Zn-substituted MnHCF samples were synthesized. Their electrochemical response was evaluated, and the function of Zn-substitution on the electrochemical performance and structure stability of MnHCF were comprehensively investigated using operando and ex-situ synchrotron X-ray diffraction (XRD) and X-ray absorption spectroscopy (XAS) techniques. After Zn substitution, both the long-range crystal structure of MnHCF and local structural environment of Mn resulted to be modified. Although the Zn-substituted samples exhibit lower specific capacity in AZIB, compared to MnHCF sample, higher cycling stability was observed, notably for the 10% ZnMnHCF sample. The working mechanism study of 10% ZnMnHCF electrode demonstrated that a new MnO6 local structural unit was formed and remained stable after the first charge process, and this rapid and steady modification of Mn site could partially explain the higher cycling stability of the 10% ZnMnHCF AZIB upon cycling. The local structural environment of Zn changes with the insertion/release of Zn2+ at the beginning cycles, but after 20 cycles, a tetrahedrally coordinated Zn unit was detected, corresponding to the cubic ZnHCF phase, which was observed for all Zn-substituted electrodes after 100 cycles.","PeriodicalId":82,"journal":{"name":"Journal of Materials Chemistry A","volume":"167 1","pages":""},"PeriodicalIF":10.7000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry A","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4ta08889a","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The electrochemical performances and reaction mechanism of manganese hexacyanoferrate (MnHCF) in aqueous rechargeable Zn-ion batteries (AZIBs) have been widely studied. Due to the irreversible intercalation of Zn2+, a consistent compositional and structural change of MnHCF has been reported. In this article, a series of (3%, 10% and 35%) Zn-substituted MnHCF samples were synthesized. Their electrochemical response was evaluated, and the function of Zn-substitution on the electrochemical performance and structure stability of MnHCF were comprehensively investigated using operando and ex-situ synchrotron X-ray diffraction (XRD) and X-ray absorption spectroscopy (XAS) techniques. After Zn substitution, both the long-range crystal structure of MnHCF and local structural environment of Mn resulted to be modified. Although the Zn-substituted samples exhibit lower specific capacity in AZIB, compared to MnHCF sample, higher cycling stability was observed, notably for the 10% ZnMnHCF sample. The working mechanism study of 10% ZnMnHCF electrode demonstrated that a new MnO6 local structural unit was formed and remained stable after the first charge process, and this rapid and steady modification of Mn site could partially explain the higher cycling stability of the 10% ZnMnHCF AZIB upon cycling. The local structural environment of Zn changes with the insertion/release of Zn2+ at the beginning cycles, but after 20 cycles, a tetrahedrally coordinated Zn unit was detected, corresponding to the cubic ZnHCF phase, which was observed for all Zn-substituted electrodes after 100 cycles.
期刊介绍:
The Journal of Materials Chemistry A, B & C covers a wide range of high-quality studies in the field of materials chemistry, with each section focusing on specific applications of the materials studied. Journal of Materials Chemistry A emphasizes applications in energy and sustainability, including topics such as artificial photosynthesis, batteries, and fuel cells. Journal of Materials Chemistry B focuses on applications in biology and medicine, while Journal of Materials Chemistry C covers applications in optical, magnetic, and electronic devices. Example topic areas within the scope of Journal of Materials Chemistry A include catalysis, green/sustainable materials, sensors, and water treatment, among others.