Unraveling the Nanosecond Photoresponse of Layered HgPSe3

IF 9.1 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Nikolas Antonatos, Artur P. Herman, Beatriz de Simoni, Karolina Ciesiołkiewicz, Eduard Belas, Marián Betušiak, Roman Grill, Kalyan Jyoti Sarkar, Amutha Subramani, David Sedmidubský, Valentino Jadriško, Alessandro Baserga, Micol Bertolotti, Stefano Dal Conte, Christoph Gadermaier, Giulio Cerullo, Antonella Treglia, Annamaria Petrozza, Robert Kudrawiec, Zdeněk Sofer
{"title":"Unraveling the Nanosecond Photoresponse of Layered HgPSe3","authors":"Nikolas Antonatos, Artur P. Herman, Beatriz de Simoni, Karolina Ciesiołkiewicz, Eduard Belas, Marián Betušiak, Roman Grill, Kalyan Jyoti Sarkar, Amutha Subramani, David Sedmidubský, Valentino Jadriško, Alessandro Baserga, Micol Bertolotti, Stefano Dal Conte, Christoph Gadermaier, Giulio Cerullo, Antonella Treglia, Annamaria Petrozza, Robert Kudrawiec, Zdeněk Sofer","doi":"10.1021/acs.nanolett.4c04945","DOIUrl":null,"url":null,"abstract":"Chalcogen phosphates of transition metals make up a well-known group of antiferromagnetic semiconductors with the general formula MPX<sub>3</sub>, where M represents a transition metal and X is a chalcogen, either sulfur or selenium. Most of these compounds adopt a similar structure; however, mercury phosphochalcogenides present an exception with their unique van der Waals layered structure. Transition metal chalcogenides are highly appealing materials for photodetectors due to their exceptional optoelectronic properties. Among them, HgPSe<sub>3</sub>, a layered van der Waals phosphoselenide, shows promise for photodetection over a broad spectral range, from visible light to X-rays. Despite this, the electronic processes governing its photoresponse remain unclear. In this study, we demonstrate a nanosecond response time of a HgPSe<sub>3</sub>-based photodetector to visible light and gain deeper insights into the underlying charge carrier dynamics through a comprehensive investigation using complementary time-resolved experimental techniques. Our findings on the role of carrier traps provide a potential pathway for optimizing optoelectronic device performance.","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"63 1","pages":""},"PeriodicalIF":9.1000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.4c04945","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Chalcogen phosphates of transition metals make up a well-known group of antiferromagnetic semiconductors with the general formula MPX3, where M represents a transition metal and X is a chalcogen, either sulfur or selenium. Most of these compounds adopt a similar structure; however, mercury phosphochalcogenides present an exception with their unique van der Waals layered structure. Transition metal chalcogenides are highly appealing materials for photodetectors due to their exceptional optoelectronic properties. Among them, HgPSe3, a layered van der Waals phosphoselenide, shows promise for photodetection over a broad spectral range, from visible light to X-rays. Despite this, the electronic processes governing its photoresponse remain unclear. In this study, we demonstrate a nanosecond response time of a HgPSe3-based photodetector to visible light and gain deeper insights into the underlying charge carrier dynamics through a comprehensive investigation using complementary time-resolved experimental techniques. Our findings on the role of carrier traps provide a potential pathway for optimizing optoelectronic device performance.

Abstract Image

揭示层状HgPSe3的纳秒光响应
过渡金属的磷酸硫构成了一组著名的反铁磁半导体,其通式为MPX3,其中M代表过渡金属,X代表硫或硒。这些化合物大多具有相似的结构;然而,磷硫系汞具有独特的范德华层状结构,是一个例外。过渡金属硫族化合物由于其特殊的光电特性而成为极具吸引力的光电探测器材料。其中,HgPSe3是一种层状范德瓦尔斯硒化膦,有望在从可见光到x射线的宽光谱范围内进行光探测。尽管如此,控制其光响应的电子过程仍不清楚。在这项研究中,我们展示了基于hgpse3的光电探测器对可见光的纳秒响应时间,并通过使用互补的时间分辨实验技术进行全面研究,深入了解了潜在的载流子动力学。我们关于载流子陷阱作用的发现为优化光电器件性能提供了一条潜在的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nano Letters
Nano Letters 工程技术-材料科学:综合
CiteScore
16.80
自引率
2.80%
发文量
1182
审稿时长
1.4 months
期刊介绍: Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including: - Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale - Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies - Modeling and simulation of synthetic, assembly, and interaction processes - Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance - Applications of nanoscale materials in living and environmental systems Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信