Yu-Cheng Li, Che-Hao Chang, Yu-Jui Wu, Chen-Yao Liao, Jiun-Yun Li
{"title":"Design guidelines for Si metal–oxide–semiconductor and Si/SiGe heterostructure quantum dots for spin qubits","authors":"Yu-Cheng Li, Che-Hao Chang, Yu-Jui Wu, Chen-Yao Liao, Jiun-Yun Li","doi":"10.1063/5.0245929","DOIUrl":null,"url":null,"abstract":"Si-based spin qubits are promising due to their long decoherence time and the compatibility with state-of-the-art semiconductor technology and have been demonstrated using quantum dots (QDs) to host single electrons for spin manipulation. In this work, we simulate the electrostatics and quantum transport properties of quantum dots on a Si metal–oxide–semiconductor platform and a Si/SiGe heterostructure. We investigate the effects of gate configurations and the SiGe spacer thickness on device characteristics, such as gate capacitances, Coulomb blockade, and charge stability. For a single quantum dot, placing its barrier gates (BGs) under the plunger gate improves the charge stability, while swapping the positions of those gates reduces the effects of the barrier gate biases on the charge stability. A thicker SiGe spacer further suppresses the effects of the barrier gate biases on the charge stability for quantum dots on the Si/SiGe heterostructure but leads to stronger crosstalk between neighboring quantum dots. Wider barrier gates can help to mitigate the crosstalk effects for multiple quantum dots. These findings provide key insights into the optimization of the gate configurations and material selection to improve the charge stability and minimize the crosstalk by different gates for future development of scalable Si-based quantum dots.","PeriodicalId":8094,"journal":{"name":"Applied Physics Letters","volume":"55 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Physics Letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0245929","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Si-based spin qubits are promising due to their long decoherence time and the compatibility with state-of-the-art semiconductor technology and have been demonstrated using quantum dots (QDs) to host single electrons for spin manipulation. In this work, we simulate the electrostatics and quantum transport properties of quantum dots on a Si metal–oxide–semiconductor platform and a Si/SiGe heterostructure. We investigate the effects of gate configurations and the SiGe spacer thickness on device characteristics, such as gate capacitances, Coulomb blockade, and charge stability. For a single quantum dot, placing its barrier gates (BGs) under the plunger gate improves the charge stability, while swapping the positions of those gates reduces the effects of the barrier gate biases on the charge stability. A thicker SiGe spacer further suppresses the effects of the barrier gate biases on the charge stability for quantum dots on the Si/SiGe heterostructure but leads to stronger crosstalk between neighboring quantum dots. Wider barrier gates can help to mitigate the crosstalk effects for multiple quantum dots. These findings provide key insights into the optimization of the gate configurations and material selection to improve the charge stability and minimize the crosstalk by different gates for future development of scalable Si-based quantum dots.
期刊介绍:
Applied Physics Letters (APL) features concise, up-to-date reports on significant new findings in applied physics. Emphasizing rapid dissemination of key data and new physical insights, APL offers prompt publication of new experimental and theoretical papers reporting applications of physics phenomena to all branches of science, engineering, and modern technology.
In addition to regular articles, the journal also publishes invited Fast Track, Perspectives, and in-depth Editorials which report on cutting-edge areas in applied physics.
APL Perspectives are forward-looking invited letters which highlight recent developments or discoveries. Emphasis is placed on very recent developments, potentially disruptive technologies, open questions and possible solutions. They also include a mini-roadmap detailing where the community should direct efforts in order for the phenomena to be viable for application and the challenges associated with meeting that performance threshold. Perspectives are characterized by personal viewpoints and opinions of recognized experts in the field.
Fast Track articles are invited original research articles that report results that are particularly novel and important or provide a significant advancement in an emerging field. Because of the urgency and scientific importance of the work, the peer review process is accelerated. If, during the review process, it becomes apparent that the paper does not meet the Fast Track criterion, it is returned to a normal track.