Lei Wang, Tengfei Huang, Ruipeng Hou, Baocheng Yang
{"title":"Enhanced near-infrared photoresponse of SnS2 nanosheets by Er–Yb co-doping","authors":"Lei Wang, Tengfei Huang, Ruipeng Hou, Baocheng Yang","doi":"10.1063/5.0249415","DOIUrl":null,"url":null,"abstract":"Rare earth (RE) ions are important dopants to modulate semiconductor properties because of their abundant energy levels. Herein, a simple Er–Yb co-doping strategy was developed to enhance the near-infrared optoelectronic properties of SnS2 nanosheets. The constructed device based on Er–Yb co-doping SnS2 has a detectivity of ∼4.97 × 108 Jones at 980 nm. The enhanced photoresponse of the doped system at 980 nm could be attributed to the upconversion behavior of the Er–Yb ion pairs. The Yb3+ ions as sensitizers significantly enhance the upconversion emission and near-infrared photoresponse properties of the material. The energy transfer from Yb3+ to Er3+ ions can occur between different layers of co-doping nanosheets by investigating the properties of the constructed SnS2:Er/SnS2:Yb homojunction nanosheets. Density functional theory calculations reveal that Er or Yb doping introduces slight structural and charge distribution changes owing to the similarity in the metal–atom coordination structure between SnS2 and RE sulfide. Our study demonstrates that RE doping is an effective way to improve the near-infrared photoresponse of 2D materials and clarifies the relationship between luminescence and photoelectric properties.","PeriodicalId":8094,"journal":{"name":"Applied Physics Letters","volume":"52 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Physics Letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0249415","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Rare earth (RE) ions are important dopants to modulate semiconductor properties because of their abundant energy levels. Herein, a simple Er–Yb co-doping strategy was developed to enhance the near-infrared optoelectronic properties of SnS2 nanosheets. The constructed device based on Er–Yb co-doping SnS2 has a detectivity of ∼4.97 × 108 Jones at 980 nm. The enhanced photoresponse of the doped system at 980 nm could be attributed to the upconversion behavior of the Er–Yb ion pairs. The Yb3+ ions as sensitizers significantly enhance the upconversion emission and near-infrared photoresponse properties of the material. The energy transfer from Yb3+ to Er3+ ions can occur between different layers of co-doping nanosheets by investigating the properties of the constructed SnS2:Er/SnS2:Yb homojunction nanosheets. Density functional theory calculations reveal that Er or Yb doping introduces slight structural and charge distribution changes owing to the similarity in the metal–atom coordination structure between SnS2 and RE sulfide. Our study demonstrates that RE doping is an effective way to improve the near-infrared photoresponse of 2D materials and clarifies the relationship between luminescence and photoelectric properties.
期刊介绍:
Applied Physics Letters (APL) features concise, up-to-date reports on significant new findings in applied physics. Emphasizing rapid dissemination of key data and new physical insights, APL offers prompt publication of new experimental and theoretical papers reporting applications of physics phenomena to all branches of science, engineering, and modern technology.
In addition to regular articles, the journal also publishes invited Fast Track, Perspectives, and in-depth Editorials which report on cutting-edge areas in applied physics.
APL Perspectives are forward-looking invited letters which highlight recent developments or discoveries. Emphasis is placed on very recent developments, potentially disruptive technologies, open questions and possible solutions. They also include a mini-roadmap detailing where the community should direct efforts in order for the phenomena to be viable for application and the challenges associated with meeting that performance threshold. Perspectives are characterized by personal viewpoints and opinions of recognized experts in the field.
Fast Track articles are invited original research articles that report results that are particularly novel and important or provide a significant advancement in an emerging field. Because of the urgency and scientific importance of the work, the peer review process is accelerated. If, during the review process, it becomes apparent that the paper does not meet the Fast Track criterion, it is returned to a normal track.