Ultrasensitive metasurface sensor based on quasi-bound states in the continuum

IF 6.5 2区 物理与天体物理 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Ning Li, He Chen, Yunxia Zhao, Yongtian Wang, Zhaoxian Su, Yin Liu, Lingling Huang
{"title":"Ultrasensitive metasurface sensor based on quasi-bound states in the continuum","authors":"Ning Li, He Chen, Yunxia Zhao, Yongtian Wang, Zhaoxian Su, Yin Liu, Lingling Huang","doi":"10.1515/nanoph-2024-0728","DOIUrl":null,"url":null,"abstract":"The quasi-bound state in the continuum (quasi-BIC) of dielectric metasurface provides a crucial platform for sensing, because its almost infinite <jats:italic>Q</jats:italic>-factor can greatly enhance the interactions between light waves and the analytes. In this work, we proposed an ultrasensitive all-dielectric metasurface sensor composed of periodic rectangular amorphous silicon pillars on a quartz substrate. By breaking symmetry of two pillars in unit cell, high <jats:italic>Q</jats:italic> quasi-BIC in the continuous near-infrared band can be excited. The magnetic toroidal dipole (MTD) is demonstrated to play a dominating role in the resonant modes by analyzing near-field distribution and multipole decomposition. The asymmetry degree has a significant impact on sensing performance of the proposed metasurface sensor, whose underlying physical mechanisms is analyzed by perturbation theory. The transmission spectrum and sensing performance of the fabricated metasurface sensor were measured. The experimental results show our designed metasurface sensor not only achieve a high sensitivity of 413/RIU, but also shows a high figure of merit (FOM) of 66 RIU<jats:sup>−1</jats:sup>. This work provides excellent prospects for the excitation of strong MTD resonance quasi-BIC in sensing applications.","PeriodicalId":19027,"journal":{"name":"Nanophotonics","volume":"95 4 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanophotonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1515/nanoph-2024-0728","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The quasi-bound state in the continuum (quasi-BIC) of dielectric metasurface provides a crucial platform for sensing, because its almost infinite Q-factor can greatly enhance the interactions between light waves and the analytes. In this work, we proposed an ultrasensitive all-dielectric metasurface sensor composed of periodic rectangular amorphous silicon pillars on a quartz substrate. By breaking symmetry of two pillars in unit cell, high Q quasi-BIC in the continuous near-infrared band can be excited. The magnetic toroidal dipole (MTD) is demonstrated to play a dominating role in the resonant modes by analyzing near-field distribution and multipole decomposition. The asymmetry degree has a significant impact on sensing performance of the proposed metasurface sensor, whose underlying physical mechanisms is analyzed by perturbation theory. The transmission spectrum and sensing performance of the fabricated metasurface sensor were measured. The experimental results show our designed metasurface sensor not only achieve a high sensitivity of 413/RIU, but also shows a high figure of merit (FOM) of 66 RIU−1. This work provides excellent prospects for the excitation of strong MTD resonance quasi-BIC in sensing applications.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nanophotonics
Nanophotonics NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
13.50
自引率
6.70%
发文量
358
审稿时长
7 weeks
期刊介绍: Nanophotonics, published in collaboration with Sciencewise, is a prestigious journal that showcases recent international research results, notable advancements in the field, and innovative applications. It is regarded as one of the leading publications in the realm of nanophotonics and encompasses a range of article types including research articles, selectively invited reviews, letters, and perspectives. The journal specifically delves into the study of photon interaction with nano-structures, such as carbon nano-tubes, nano metal particles, nano crystals, semiconductor nano dots, photonic crystals, tissue, and DNA. It offers comprehensive coverage of the most up-to-date discoveries, making it an essential resource for physicists, engineers, and material scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信