Molecular-dipole oriented universal growth of conjugated polymers into semiconducting single-crystal thin films

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Chunyan Zhao, Xilin Lai, Dawei Liu, Xinrui Guo, Jiamin Tian, Zuoyuan Dong, Shaochuan Luo, Dongshan Zhou, Lang Jiang, Ru Huang, Ming He
{"title":"Molecular-dipole oriented universal growth of conjugated polymers into semiconducting single-crystal thin films","authors":"Chunyan Zhao, Xilin Lai, Dawei Liu, Xinrui Guo, Jiamin Tian, Zuoyuan Dong, Shaochuan Luo, Dongshan Zhou, Lang Jiang, Ru Huang, Ming He","doi":"10.1038/s41467-025-56757-2","DOIUrl":null,"url":null,"abstract":"<p>Precise control over crystallinity and morphology of conjugated polymers (CPs) is essential for progressing organic electronics. However, manufacturing single-crystal thin films of CPs presents substantial challenges due to their complex molecular structures, distorted chain conformations, and unbalanced crystallization kinetics. In this work, we demonstrate a universal nanoconfined molecular-dipole orientating strategy to craft high-quality single-crystal thin films for a variety of CPs, spanning from traditional thiophene- and theinothiophene-based homopolymers to diketopyrrolopyrrole- (i.e., <i>p</i>-type) and naphthalene-based (i.e., <i>n</i>-type) donor-acceptor copolymers. Central to this strategy is the synergetic manipulations of molecular dipoles, π-π stackings, and alkyl-alkyl interactions of CPs within our rationally-designed spatial-electrostatic confinement capacitor, which facilitates the rotation of conjugated backbones and the alignment of π-π stackings into microscale-sized single-crystal thin films. A minimal energetic disorder of 25 meV that below the thermal fluctuation energy <i>k</i><sub>B</sub><i>T</i> at room temperature, as well as an excellent transistor mobility of 15.5 cm<sup>2</sup>V<sup>−1</sup>s<sup>−1</sup> are achieved, marking a significant step towards controllable growths of conjugated-polymer single-crystal thin films that hold a cornerstone for high-performance organic electronic devices.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"13 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-56757-2","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Precise control over crystallinity and morphology of conjugated polymers (CPs) is essential for progressing organic electronics. However, manufacturing single-crystal thin films of CPs presents substantial challenges due to their complex molecular structures, distorted chain conformations, and unbalanced crystallization kinetics. In this work, we demonstrate a universal nanoconfined molecular-dipole orientating strategy to craft high-quality single-crystal thin films for a variety of CPs, spanning from traditional thiophene- and theinothiophene-based homopolymers to diketopyrrolopyrrole- (i.e., p-type) and naphthalene-based (i.e., n-type) donor-acceptor copolymers. Central to this strategy is the synergetic manipulations of molecular dipoles, π-π stackings, and alkyl-alkyl interactions of CPs within our rationally-designed spatial-electrostatic confinement capacitor, which facilitates the rotation of conjugated backbones and the alignment of π-π stackings into microscale-sized single-crystal thin films. A minimal energetic disorder of 25 meV that below the thermal fluctuation energy kBT at room temperature, as well as an excellent transistor mobility of 15.5 cm2V−1s−1 are achieved, marking a significant step towards controllable growths of conjugated-polymer single-crystal thin films that hold a cornerstone for high-performance organic electronic devices.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信