The Extraordinary Long-lasting Infrared Echo of PS16dtm Reveals an Extremely Energetic Nuclear Outburst

Ning Jiang, Di Luo, Jiazheng Zhu and Roc M. Cutri
{"title":"The Extraordinary Long-lasting Infrared Echo of PS16dtm Reveals an Extremely Energetic Nuclear Outburst","authors":"Ning Jiang, Di Luo, Jiazheng Zhu and Roc M. Cutri","doi":"10.3847/2041-8213/adaeb9","DOIUrl":null,"url":null,"abstract":"PS16dtm is one of the earliest reported tidal disruption events (TDEs) in active galactic nuclei and displays a remarkably bright and long-lived infrared (IR) echo revealed by multiepoch photometry from the Wide-field Infrared Survey Explorer (WISE). After a rapid rise in the first year, the echo remains persistently at a high state from 2017 July to 2024 July, the latest epoch, and keeps an almost constant color. We have fitted the extraordinary IR emission with a refined dust echo model by taking into account the dust sublimation process. The fitting suggests that an extremely giant dust structure with a new inner radius of ∼1.6 pc and an ultrahigh peak bolometric luminosity, i.e., ∼6 × 1046 erg s−1 for typical 0.1 μm-sized silicate grain, is required to account for the IR echo. This work highlights the distinctive value of IR echoes in measuring the accurate intrinsic bolometric luminosity and thus the total radiated energy of TDEs, which could be severely underestimated by traditional methods, i.e., probably by more than 1 order of magnitude in PS16dtm. Such large energetic output compared to normal TDEs could be boosted by the preexisting accretion disk and gas clouds around the black hole. Our model can be validated in the near future by IR time-domain surveys such as the Near-Earth Object Surveyor, given the recent retirement of WISE. In addition, the potential for spatially resolving a receding dusty torus after a TDE could also be an exciting subject in the era of advanced IR interferometry.","PeriodicalId":501814,"journal":{"name":"The Astrophysical Journal Letters","volume":"65 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Astrophysical Journal Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3847/2041-8213/adaeb9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

PS16dtm is one of the earliest reported tidal disruption events (TDEs) in active galactic nuclei and displays a remarkably bright and long-lived infrared (IR) echo revealed by multiepoch photometry from the Wide-field Infrared Survey Explorer (WISE). After a rapid rise in the first year, the echo remains persistently at a high state from 2017 July to 2024 July, the latest epoch, and keeps an almost constant color. We have fitted the extraordinary IR emission with a refined dust echo model by taking into account the dust sublimation process. The fitting suggests that an extremely giant dust structure with a new inner radius of ∼1.6 pc and an ultrahigh peak bolometric luminosity, i.e., ∼6 × 1046 erg s−1 for typical 0.1 μm-sized silicate grain, is required to account for the IR echo. This work highlights the distinctive value of IR echoes in measuring the accurate intrinsic bolometric luminosity and thus the total radiated energy of TDEs, which could be severely underestimated by traditional methods, i.e., probably by more than 1 order of magnitude in PS16dtm. Such large energetic output compared to normal TDEs could be boosted by the preexisting accretion disk and gas clouds around the black hole. Our model can be validated in the near future by IR time-domain surveys such as the Near-Earth Object Surveyor, given the recent retirement of WISE. In addition, the potential for spatially resolving a receding dusty torus after a TDE could also be an exciting subject in the era of advanced IR interferometry.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信