Structural Reconstruction via Carbon Nanotube Spatially Confined Metal Catalysis: A Morphology-Controlled Approach to Convert Polycyclic Aromatic Hydrocarbon into Carbon Nanofibers for Highly Active Anodes in Li-Ion Batteries

IF 4.3 2区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR
Ming Chen, Ming-Yang Zhao, Ke Liu, Feng-Ming Liu, Zhong-Yong Yuan, Xing Qian, Rong Wan, Chun-Sheng Li, Ai-Xiang Ding
{"title":"Structural Reconstruction via Carbon Nanotube Spatially Confined Metal Catalysis: A Morphology-Controlled Approach to Convert Polycyclic Aromatic Hydrocarbon into Carbon Nanofibers for Highly Active Anodes in Li-Ion Batteries","authors":"Ming Chen, Ming-Yang Zhao, Ke Liu, Feng-Ming Liu, Zhong-Yong Yuan, Xing Qian, Rong Wan, Chun-Sheng Li, Ai-Xiang Ding","doi":"10.1021/acs.inorgchem.4c05514","DOIUrl":null,"url":null,"abstract":"By a carbon nanotube (CNT) spatially confined metal-catalyzed structural reconstruction, carbon nanofibers (CNFs) with a hollow, hollow-solid, solid graphite core, and CNT shell are prepared using nitrogen heterocycle (NHC) and polycyclic aromatic hydrocarbon (PAH) as carbon sources. The formation mechanism of CNFs with oriented graphene layers and enlarged intergraphene spacing is studied by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and selected area electron diffraction analysis. It revealed that this one-dimensional nanoconfined metal-catalyzed carbon rearrangement is totally different from the reported spatially localized metal-catalyzed graphitization of electrospun polymer and nanocasted carbohydrate nanofibers, as the graphene orientation, cavity volume, and interlayer distance of CNFs can be controlled by the carbon concentration-related competitive metal-catalyzed tip growth of latitudinal and longitudinal graphene layers from NHC and PAH. The unique CNF structure renders good electronic/ionic conductivity, abundant Li<sup>+</sup> storage interlayer gaps, and robust mechanical durability, resulting in outstanding electrochemical properties as anodes in lithium-ion batteries. The optimum CNF anode delivers a stable discharge capacity of 475 mA h g<sup>–1</sup> at 0.1 C, an extraordinary rate capability of 303 mA h g<sup>–1</sup> at 5 C, and a remarkable long-term cycling stability of 378 mA h g<sup>-1</sup> after 600 cycles at 1 C. This 1D nanoconfined metal catalysis synthesis could be useful for the development of efficient CNF anodes in many electrochemical reactions with a potential for industrial applications.","PeriodicalId":40,"journal":{"name":"Inorganic Chemistry","volume":"79 5 Pt 1 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.inorgchem.4c05514","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

Abstract

By a carbon nanotube (CNT) spatially confined metal-catalyzed structural reconstruction, carbon nanofibers (CNFs) with a hollow, hollow-solid, solid graphite core, and CNT shell are prepared using nitrogen heterocycle (NHC) and polycyclic aromatic hydrocarbon (PAH) as carbon sources. The formation mechanism of CNFs with oriented graphene layers and enlarged intergraphene spacing is studied by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and selected area electron diffraction analysis. It revealed that this one-dimensional nanoconfined metal-catalyzed carbon rearrangement is totally different from the reported spatially localized metal-catalyzed graphitization of electrospun polymer and nanocasted carbohydrate nanofibers, as the graphene orientation, cavity volume, and interlayer distance of CNFs can be controlled by the carbon concentration-related competitive metal-catalyzed tip growth of latitudinal and longitudinal graphene layers from NHC and PAH. The unique CNF structure renders good electronic/ionic conductivity, abundant Li+ storage interlayer gaps, and robust mechanical durability, resulting in outstanding electrochemical properties as anodes in lithium-ion batteries. The optimum CNF anode delivers a stable discharge capacity of 475 mA h g–1 at 0.1 C, an extraordinary rate capability of 303 mA h g–1 at 5 C, and a remarkable long-term cycling stability of 378 mA h g-1 after 600 cycles at 1 C. This 1D nanoconfined metal catalysis synthesis could be useful for the development of efficient CNF anodes in many electrochemical reactions with a potential for industrial applications.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Inorganic Chemistry
Inorganic Chemistry 化学-无机化学与核化学
CiteScore
7.60
自引率
13.00%
发文量
1960
审稿时长
1.9 months
期刊介绍: Inorganic Chemistry publishes fundamental studies in all phases of inorganic chemistry. Coverage includes experimental and theoretical reports on quantitative studies of structure and thermodynamics, kinetics, mechanisms of inorganic reactions, bioinorganic chemistry, and relevant aspects of organometallic chemistry, solid-state phenomena, and chemical bonding theory. Emphasis is placed on the synthesis, structure, thermodynamics, reactivity, spectroscopy, and bonding properties of significant new and known compounds.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信