Efficient and stable copper tungstate catalyst for water treatment with peroxymonosulfate: Effect of synthetic pH, primary oxidant, and practical feasibility.

Khen Duy Tran, Yong-Yoon Ahn, Bomi Kim, Kitae Kim, Jonghun Lim, Jungwon Kim
{"title":"Efficient and stable copper tungstate catalyst for water treatment with peroxymonosulfate: Effect of synthetic pH, primary oxidant, and practical feasibility.","authors":"Khen Duy Tran, Yong-Yoon Ahn, Bomi Kim, Kitae Kim, Jonghun Lim, Jungwon Kim","doi":"10.1016/j.jhazmat.2025.137482","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, copper tungstate (CuWO<sub>4</sub>) nanoparticles, which are highly efficient and stable catalysts for water treatment, were synthesized via a hydrothermal method under various pH conditions. CuWO<sub>4</sub> synthesized at pH 10 (CuWO<sub>4</sub>@10) exhibited the highest degradation efficiency and the lowest metal ion leaching. In the presence of CuWO<sub>4</sub>@10 (0.5 g/L) and peroxymonosulfate (PMS, 1 mM), 4-chlorophenol (4-CP, 100 μM) was completely degraded within 5 min, and the total metal ion leaching concentration after 4 h was only 10.2 μM. The catalytic activity of CuWO<sub>4</sub> for 4-CP degradation was 4.7-99.0 times greater than that of CuO catalysts. This enhanced performance is attributed to the presence of W, which increases the surface area and reduces charge transfer resistance. Based on the results of radical-quenching experiments, solvent exchange experiments, PMS decomposition measurements, electron paramagnetic resonance spectroscopy, and Raman spectroscopy, high-valent copper (Cu(III)) was identified as the primary oxidant responsible for degradation in the CuWO<sub>4</sub>/PMS system. The CuWO<sub>4</sub>/PMS system rapidly degraded various phenolic compounds, and its degradation efficiency remained consistent across repeated uses of the CuWO<sub>4</sub> catalyst. Degradation in groundwater also occurred efficiently in the CuWO<sub>4</sub>/PMS system. This study provides valuable insights into the development of practical PMS-based water treatment processes.</p>","PeriodicalId":94082,"journal":{"name":"Journal of hazardous materials","volume":"488 ","pages":"137482"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of hazardous materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.jhazmat.2025.137482","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, copper tungstate (CuWO4) nanoparticles, which are highly efficient and stable catalysts for water treatment, were synthesized via a hydrothermal method under various pH conditions. CuWO4 synthesized at pH 10 (CuWO4@10) exhibited the highest degradation efficiency and the lowest metal ion leaching. In the presence of CuWO4@10 (0.5 g/L) and peroxymonosulfate (PMS, 1 mM), 4-chlorophenol (4-CP, 100 μM) was completely degraded within 5 min, and the total metal ion leaching concentration after 4 h was only 10.2 μM. The catalytic activity of CuWO4 for 4-CP degradation was 4.7-99.0 times greater than that of CuO catalysts. This enhanced performance is attributed to the presence of W, which increases the surface area and reduces charge transfer resistance. Based on the results of radical-quenching experiments, solvent exchange experiments, PMS decomposition measurements, electron paramagnetic resonance spectroscopy, and Raman spectroscopy, high-valent copper (Cu(III)) was identified as the primary oxidant responsible for degradation in the CuWO4/PMS system. The CuWO4/PMS system rapidly degraded various phenolic compounds, and its degradation efficiency remained consistent across repeated uses of the CuWO4 catalyst. Degradation in groundwater also occurred efficiently in the CuWO4/PMS system. This study provides valuable insights into the development of practical PMS-based water treatment processes.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信