Effect of Bioactive Glass into Mineral Trioxide Aggregate on the Biocompatibility and Mineralization Potential of Dental Pulp Stem Cells.

IF 8.1 Q1 ENGINEERING, BIOMEDICAL
Biomaterials research Pub Date : 2025-02-07 eCollection Date: 2025-01-01 DOI:10.34133/bmr.0142
Hee-Gyun Kim, Bin-Na Lee, Hyun-Jeong Jeong, Hyun-Jung Kim, Jiyoung Kwon, Soram Oh, Duck-Su Kim, Kyoung-Kyu Choi, Reuben H Kim, Ji-Hyun Jang
{"title":"Effect of Bioactive Glass into Mineral Trioxide Aggregate on the Biocompatibility and Mineralization Potential of Dental Pulp Stem Cells.","authors":"Hee-Gyun Kim, Bin-Na Lee, Hyun-Jeong Jeong, Hyun-Jung Kim, Jiyoung Kwon, Soram Oh, Duck-Su Kim, Kyoung-Kyu Choi, Reuben H Kim, Ji-Hyun Jang","doi":"10.34133/bmr.0142","DOIUrl":null,"url":null,"abstract":"<p><p><b>Introduction:</b> Previous studies have shown that bioactive glass (BG) can enhance the formation of hydroxyapatite under simulated body fluid (SBF) conditions when combined with mineral trioxide aggregate (MTA). This study aims to assess the impact of BG-supplemented MTA on the biocompatibility and mineralization potential of dental pulp stem cells (DPSCs). <b>Methods:</b> We prepared ProRoot MTA (MTA) and MTA supplemented with 2% and 4% BG. Five passages of DPSCs were utilized for the experiments. The DPSCs were subjected to various tests to determine their morphology, viability, cell migration, and adhesion assay. Additionally, mineralization ability was assessed through SBF immersion treatment, alkaline phosphatase (ALP) activity test, Alizarin red S (ARS) staining, and real-time quantitative polymerase chain reaction (RT-qPCR) analysis. <b>Results:</b> The biocompatibility of BG-supplemented MTA was found to be comparable to that of conventional MTA, as demonstrated by the cell counting kit-8 (CCK-8) assay, cell migration, adhesion assays, and cell morphology on cement surfaces. Under SBF treatment, MTA supplemented with BG, particularly at a concentration of 4%, exhibited higher mineralization potential than conventional MTA in the ALP activity assay. This was supported by denser ARS staining, increased ALP activity, and higher expression of dentin sialophosphoprotein (DSPP), ALP, and bone morphogenetic protein-2 (BMP-2) in the SBF-treated MTABG group. <b>Conclusion:</b> Our study revealed that the biocompatibility of BG-supplemented MTA is similar to that of conventional MTA. Additionally, under SBF treatment, BG-supplemented MTA displayed enhanced mineralization potential, indicating that BG supplementation can augment the mineralization capabilities of MTA.</p>","PeriodicalId":93902,"journal":{"name":"Biomaterials research","volume":"29 ","pages":"0142"},"PeriodicalIF":8.1000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11803057/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomaterials research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34133/bmr.0142","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: Previous studies have shown that bioactive glass (BG) can enhance the formation of hydroxyapatite under simulated body fluid (SBF) conditions when combined with mineral trioxide aggregate (MTA). This study aims to assess the impact of BG-supplemented MTA on the biocompatibility and mineralization potential of dental pulp stem cells (DPSCs). Methods: We prepared ProRoot MTA (MTA) and MTA supplemented with 2% and 4% BG. Five passages of DPSCs were utilized for the experiments. The DPSCs were subjected to various tests to determine their morphology, viability, cell migration, and adhesion assay. Additionally, mineralization ability was assessed through SBF immersion treatment, alkaline phosphatase (ALP) activity test, Alizarin red S (ARS) staining, and real-time quantitative polymerase chain reaction (RT-qPCR) analysis. Results: The biocompatibility of BG-supplemented MTA was found to be comparable to that of conventional MTA, as demonstrated by the cell counting kit-8 (CCK-8) assay, cell migration, adhesion assays, and cell morphology on cement surfaces. Under SBF treatment, MTA supplemented with BG, particularly at a concentration of 4%, exhibited higher mineralization potential than conventional MTA in the ALP activity assay. This was supported by denser ARS staining, increased ALP activity, and higher expression of dentin sialophosphoprotein (DSPP), ALP, and bone morphogenetic protein-2 (BMP-2) in the SBF-treated MTABG group. Conclusion: Our study revealed that the biocompatibility of BG-supplemented MTA is similar to that of conventional MTA. Additionally, under SBF treatment, BG-supplemented MTA displayed enhanced mineralization potential, indicating that BG supplementation can augment the mineralization capabilities of MTA.

生物活性玻璃对牙髓干细胞生物相容性及矿化潜能的影响。
先前的研究表明,生物活性玻璃(BG)与三氧化二矿骨料(MTA)结合可以促进模拟体液(SBF)条件下羟基磷灰石的形成。本研究旨在评估bg - MTA对牙髓干细胞(DPSCs)生物相容性和矿化潜力的影响。方法:制备prooroot MTA (MTA)和添加2% BG和4% BG的MTA。利用5代DPSCs进行实验。对DPSCs进行各种测试,以确定其形态、活力、细胞迁移和粘附试验。此外,通过SBF浸泡处理、碱性磷酸酶(ALP)活性测试、茜素红S (ARS)染色和实时定量聚合酶链反应(RT-qPCR)分析评估矿化能力。结果:通过细胞计数试剂盒-8 (CCK-8)试验、细胞迁移、粘附试验和水泥表面细胞形态,发现bg -补充MTA的生物相容性与常规MTA相当。在SBF处理下,添加BG的MTA,特别是在浓度为4%时,在ALP活性分析中显示出比常规MTA更高的矿化潜力。在sbf处理的MTABG组中,更密集的ARS染色,ALP活性增加,牙本质唾液磷酸蛋白(DSPP), ALP和骨形态发生蛋白-2 (BMP-2)的表达更高,支持了这一点。结论:我们的研究表明,添加bg的MTA的生物相容性与常规MTA相似。此外,在SBF处理下,添加BG的MTA显示出增强的矿化潜力,说明添加BG可以增强MTA的矿化能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信