Heat Stress, Starvation, and Heat Stress Plus Starvation Cause Unique Transcriptomic Responses in the Economically Important Red Abalone Haliotis rufescens.

microPublication biology Pub Date : 2025-01-24 eCollection Date: 2025-01-01 DOI:10.17912/micropub.biology.001473
Hanna L Franklin, Lani U Gleason
{"title":"Heat Stress, Starvation, and Heat Stress Plus Starvation Cause Unique Transcriptomic Responses in the Economically Important Red Abalone <i>Haliotis rufescens</i>.","authors":"Hanna L Franklin, Lani U Gleason","doi":"10.17912/micropub.biology.001473","DOIUrl":null,"url":null,"abstract":"<p><p>Although most marine invertebrates are experiencing multiple environmental stressors simultaneously, the transcriptome-wide gene expression responses to multiple stressors remain understudied. We used RNA-sequencing to assess the transcriptomic responses to heat stress, starvation, and heat stress plus starvation in the red abalone <i>Haliotis rufescens.</i> Results indicate that the response to each stressor is distinct and is characterized by unique gene functions. The heat stress plus starvation treatment produced the largest transcriptomic response, including a significant upregulation of genes involved in translation. Overall, this study highlights the importance of multi-stressor experiments that reflect the complex modalities of climate change.</p>","PeriodicalId":74192,"journal":{"name":"microPublication biology","volume":"2025 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11806381/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"microPublication biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17912/micropub.biology.001473","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Although most marine invertebrates are experiencing multiple environmental stressors simultaneously, the transcriptome-wide gene expression responses to multiple stressors remain understudied. We used RNA-sequencing to assess the transcriptomic responses to heat stress, starvation, and heat stress plus starvation in the red abalone Haliotis rufescens. Results indicate that the response to each stressor is distinct and is characterized by unique gene functions. The heat stress plus starvation treatment produced the largest transcriptomic response, including a significant upregulation of genes involved in translation. Overall, this study highlights the importance of multi-stressor experiments that reflect the complex modalities of climate change.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
审稿时长
3 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信