CSE-8, a filamentous fungus-specific Shr3-like chaperone, facilitates endoplasmic reticulum exit of chitin synthase CHS-3 (class I) in Neurospora crassa.

IF 2.1 Q3 MYCOLOGY
Frontiers in fungal biology Pub Date : 2025-01-24 eCollection Date: 2024-01-01 DOI:10.3389/ffunb.2024.1505388
Samantha Verónica González-Téllez, Meritxell Riquelme
{"title":"CSE-8, a filamentous fungus-specific Shr3-like chaperone, facilitates endoplasmic reticulum exit of chitin synthase CHS-3 (class I) in <i>Neurospora crassa</i>.","authors":"Samantha Verónica González-Téllez, Meritxell Riquelme","doi":"10.3389/ffunb.2024.1505388","DOIUrl":null,"url":null,"abstract":"<p><p>Chitin is a crucial structural polysaccharide in fungal cell walls, essential for maintaining cellular plasticity and integrity. Its synthesis is orchestrated by chitin synthases (CHS), a major family of transmembrane proteins. In <i>Saccharomyces cerevisiae</i>, the cargo receptor Chs7, belonging to the Shr3-like chaperone family, plays a pivotal role in the exit of Chs3 from the endoplasmic reticulum (ER) and its subsequent activity in the plasma membrane (PM). However, the auxiliary machinery responsible for CHS trafficking in filamentous fungi remains poorly understood. The <i>Neurospora crassa</i> genome encodes two orthologues of Chs7: chitin synthase export (CSE) proteins CSE-7 (NCU05720) and CSE-8 (NCU01814), both of which are highly conserved among filamentous fungi. In contrast, yeast forms only possess a single copy CHS export receptor. Previous research highlighted the crucial role of CSE-7 in the localization of CHS-4 at sites of cell wall synthesis, including the Spitzenkörper (SPK) and septa. In this study, CSE-8 was identified as an export protein for CHS-3 (class I). In the <i>Δcse-8</i> knockout strain of <i>N. crassa</i>, CHS-3-GFP fluorescence was absent from the SPK or septa, indicating that CSE-8 is required for the exit of CHS-3 from the ER. Additionally, sexual development was disrupted in the <i>Δcse-8</i> strain, with 20% of perithecia from homozygous crosses exhibiting two ostioles. A <i>Δcse-7;Δcse-8</i> double mutant strain showed reduced N-acetylglucosamine (GlcNAc) content and decreased radial growth. Furthermore, the loss of cell polarity and the changes in subcellular distribution of CSE-8-GFP and CHS-3-GFP observed in hyphae under ER stress induced by the addition of tunicamycin and dithiothreitol reinforce the hypothesis that CSE-8 functions as an ER protein. The current evidence suggests that the biogenesis of CHS exclusive to filamentous fungi may involve pathways independent of CSE-mediated receptors.</p>","PeriodicalId":73084,"journal":{"name":"Frontiers in fungal biology","volume":"5 ","pages":"1505388"},"PeriodicalIF":2.1000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11803449/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in fungal biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/ffunb.2024.1505388","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"MYCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Chitin is a crucial structural polysaccharide in fungal cell walls, essential for maintaining cellular plasticity and integrity. Its synthesis is orchestrated by chitin synthases (CHS), a major family of transmembrane proteins. In Saccharomyces cerevisiae, the cargo receptor Chs7, belonging to the Shr3-like chaperone family, plays a pivotal role in the exit of Chs3 from the endoplasmic reticulum (ER) and its subsequent activity in the plasma membrane (PM). However, the auxiliary machinery responsible for CHS trafficking in filamentous fungi remains poorly understood. The Neurospora crassa genome encodes two orthologues of Chs7: chitin synthase export (CSE) proteins CSE-7 (NCU05720) and CSE-8 (NCU01814), both of which are highly conserved among filamentous fungi. In contrast, yeast forms only possess a single copy CHS export receptor. Previous research highlighted the crucial role of CSE-7 in the localization of CHS-4 at sites of cell wall synthesis, including the Spitzenkörper (SPK) and septa. In this study, CSE-8 was identified as an export protein for CHS-3 (class I). In the Δcse-8 knockout strain of N. crassa, CHS-3-GFP fluorescence was absent from the SPK or septa, indicating that CSE-8 is required for the exit of CHS-3 from the ER. Additionally, sexual development was disrupted in the Δcse-8 strain, with 20% of perithecia from homozygous crosses exhibiting two ostioles. A Δcse-7;Δcse-8 double mutant strain showed reduced N-acetylglucosamine (GlcNAc) content and decreased radial growth. Furthermore, the loss of cell polarity and the changes in subcellular distribution of CSE-8-GFP and CHS-3-GFP observed in hyphae under ER stress induced by the addition of tunicamycin and dithiothreitol reinforce the hypothesis that CSE-8 functions as an ER protein. The current evidence suggests that the biogenesis of CHS exclusive to filamentous fungi may involve pathways independent of CSE-mediated receptors.

CSE-8是一种丝状真菌特异性shr3样伴侣蛋白,可促进粗神经孢子虫几丁质合成酶CHS-3 (I类)的内质网出口。
几丁质是真菌细胞壁中重要的结构多糖,对维持细胞的可塑性和完整性至关重要。它的合成是由几丁质合成酶(CHS)协调的,几丁质合成酶是跨膜蛋白的一个主要家族。在酿酒酵母中,货物受体Chs7属于shr3样伴侣蛋白家族,在Chs3从内质网(ER)退出及其随后在质膜(PM)中的活性中起关键作用。然而,对丝状真菌贩运CHS的辅助机制仍然知之甚少。粗神经孢子虫基因组编码Chs7的两个同源基因:几丁质合成酶输出(CSE)蛋白CSE-7 (NCU05720)和CSE-8 (NCU01814),这两个蛋白在丝状真菌中高度保守。相比之下,酵母形式只具有一个拷贝CHS输出受体。先前的研究强调了CSE-7在细胞壁合成位点(包括Spitzenkörper (SPK)和间隔)定位CHS-4的关键作用。在本研究中,CSE-8被鉴定为CHS-3的输出蛋白(I类)。在Δcse-8敲除菌株中,CHS-3- gfp荧光在SPK或隔中缺失,表明CHS-3从ER中退出需要CSE-8。此外,Δcse-8菌株的性发育被破坏,纯合子杂交中20%的包皮有两个口孔。Δcse-7;Δcse-8双突变株显示n -乙酰氨基葡萄糖(GlcNAc)含量降低,径向生长下降。此外,在tunicamycin和二硫苏糖醇诱导的ER胁迫下,在菌丝中观察到CSE-8- gfp和CHS-3-GFP的细胞极性丧失和亚细胞分布的变化,强化了CSE-8作为ER蛋白的假设。目前的证据表明,丝状真菌独有的CHS的生物发生可能涉及独立于cse介导受体的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.70
自引率
0.00%
发文量
0
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信