Identifying Important Pairwise Logratios in Compositional Data with Sparse Principal Component Analysis.

IF 2.8 3区 地球科学 Q2 GEOSCIENCES, MULTIDISCIPLINARY
Mathematical Geosciences Pub Date : 2025-01-01 Epub Date: 2024-10-10 DOI:10.1007/s11004-024-10159-0
Viktorie Nesrstová, Ines Wilms, Karel Hron, Peter Filzmoser
{"title":"Identifying Important Pairwise Logratios in Compositional Data with Sparse Principal Component Analysis.","authors":"Viktorie Nesrstová, Ines Wilms, Karel Hron, Peter Filzmoser","doi":"10.1007/s11004-024-10159-0","DOIUrl":null,"url":null,"abstract":"<p><p>Compositional data are characterized by the fact that their elemental information is contained in simple pairwise logratios of the parts that constitute the composition. While pairwise logratios are typically easy to interpret, the number of possible pairs to consider quickly becomes too large even for medium-sized compositions, which may hinder interpretability in further multivariate analysis. Sparse methods can therefore be useful for identifying a few important pairwise logratios (and parts contained in them) from the total candidate set. To this end, we propose a procedure based on the construction of all possible pairwise logratios and employ sparse principal component analysis to identify important pairwise logratios. The performance of the procedure is demonstrated with both simulated and real-world data. In our empirical analysis, we propose three visual tools showing (i) the balance between sparsity and explained variability, (ii) the stability of the pairwise logratios, and (iii) the importance of the original compositional parts to aid practitioners in their model interpretation.</p>","PeriodicalId":51117,"journal":{"name":"Mathematical Geosciences","volume":"57 2","pages":"333-358"},"PeriodicalIF":2.8000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11805788/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Geosciences","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s11004-024-10159-0","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/10 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Compositional data are characterized by the fact that their elemental information is contained in simple pairwise logratios of the parts that constitute the composition. While pairwise logratios are typically easy to interpret, the number of possible pairs to consider quickly becomes too large even for medium-sized compositions, which may hinder interpretability in further multivariate analysis. Sparse methods can therefore be useful for identifying a few important pairwise logratios (and parts contained in them) from the total candidate set. To this end, we propose a procedure based on the construction of all possible pairwise logratios and employ sparse principal component analysis to identify important pairwise logratios. The performance of the procedure is demonstrated with both simulated and real-world data. In our empirical analysis, we propose three visual tools showing (i) the balance between sparsity and explained variability, (ii) the stability of the pairwise logratios, and (iii) the importance of the original compositional parts to aid practitioners in their model interpretation.

用稀疏主成分分析识别组合数据中的重要成对对数。
组成数据的特点是,它们的元素信息包含在组成组成部分的简单成对对数中。虽然两两关系通常很容易解释,但即使对于中等规模的组合,要快速考虑的可能对的数量也会变得太大,这可能会阻碍进一步的多变量分析的可解释性。因此,稀疏方法可以用于从总候选集中识别一些重要的成对对数(以及其中包含的部分)。为此,我们提出了一种基于构造所有可能的两两对数的方法,并采用稀疏主成分分析来识别重要的两两对数。通过模拟和实际数据验证了该方法的性能。在我们的实证分析中,我们提出了三种可视化工具,显示(i)稀疏性和被解释变异性之间的平衡,(ii)两两logratios的稳定性,以及(iii)原始组成部分对帮助从业者解释模型的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mathematical Geosciences
Mathematical Geosciences 地学-地球科学综合
CiteScore
5.30
自引率
15.40%
发文量
50
审稿时长
>12 weeks
期刊介绍: Mathematical Geosciences (formerly Mathematical Geology) publishes original, high-quality, interdisciplinary papers in geomathematics focusing on quantitative methods and studies of the Earth, its natural resources and the environment. This international publication is the official journal of the IAMG. Mathematical Geosciences is an essential reference for researchers and practitioners of geomathematics who develop and apply quantitative models to earth science and geo-engineering problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信