Investigating Bacterial-Fungal Interactions using Fungal Highway Columns in Diverse Environments and Substrates.

IF 1.2 4区 综合性期刊 Q3 MULTIDISCIPLINARY SCIENCES
Julia M Kelliher, Leah Y D Johnson, Aaron J Robinson, Ilona Palmieri, Buck T Hanson, Reid Longley, La Verne Gallegos-Graves, Kaelan Prime, Guillaume Cailleau, Saskia Bindschedler, Patrick S G Chain, Pilar Junier
{"title":"Investigating Bacterial-Fungal Interactions using Fungal Highway Columns in Diverse Environments and Substrates.","authors":"Julia M Kelliher, Leah Y D Johnson, Aaron J Robinson, Ilona Palmieri, Buck T Hanson, Reid Longley, La Verne Gallegos-Graves, Kaelan Prime, Guillaume Cailleau, Saskia Bindschedler, Patrick S G Chain, Pilar Junier","doi":"10.3791/66989","DOIUrl":null,"url":null,"abstract":"<p><p>Bacterial-fungal interactions (BFIs) play an integral role in shaping microbial community composition, biogeochemical functions, spatial dynamics, and microbial dispersal. Mycelial networks created by filamentous fungi or other filamentous microorganisms (e.g., Oomycetes) act as 'fungal highways' that can be utilized by bacteria for transport throughout heterogeneous environments, greatly facilitating their mobility and granting them access to regions that may be challenging or impossible to reach on their own (e.g., due to air pockets within the soil). Several devices and experimental protocols have been created to study these fungal highways, including fungal highway columns. The fungal highway column designed by our group can be used for a variety of in situ or in vitro applications, as well as with diverse environmental and host-associated sample types. Herein, we describe the methods for performing experiments with these columns, including designing, printing, sterilizing, and preparing the devices. The options for analyzing data obtained from the use of these devices are also discussed here, and troubleshooting advice regarding potential pitfalls associated with experiments using fungal highway columns is offered. These devices can be used to gain a more comprehensive understanding of the diversity, mechanisms, and dynamics of fungal highway BFIs to provide valuable insights into the structural and functional dynamics within complex environments (e.g., soils) and across diverse habitats in which bacteria and fungi co-exist.</p>","PeriodicalId":48787,"journal":{"name":"Jove-Journal of Visualized Experiments","volume":" 215","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jove-Journal of Visualized Experiments","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3791/66989","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Bacterial-fungal interactions (BFIs) play an integral role in shaping microbial community composition, biogeochemical functions, spatial dynamics, and microbial dispersal. Mycelial networks created by filamentous fungi or other filamentous microorganisms (e.g., Oomycetes) act as 'fungal highways' that can be utilized by bacteria for transport throughout heterogeneous environments, greatly facilitating their mobility and granting them access to regions that may be challenging or impossible to reach on their own (e.g., due to air pockets within the soil). Several devices and experimental protocols have been created to study these fungal highways, including fungal highway columns. The fungal highway column designed by our group can be used for a variety of in situ or in vitro applications, as well as with diverse environmental and host-associated sample types. Herein, we describe the methods for performing experiments with these columns, including designing, printing, sterilizing, and preparing the devices. The options for analyzing data obtained from the use of these devices are also discussed here, and troubleshooting advice regarding potential pitfalls associated with experiments using fungal highway columns is offered. These devices can be used to gain a more comprehensive understanding of the diversity, mechanisms, and dynamics of fungal highway BFIs to provide valuable insights into the structural and functional dynamics within complex environments (e.g., soils) and across diverse habitats in which bacteria and fungi co-exist.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Jove-Journal of Visualized Experiments
Jove-Journal of Visualized Experiments MULTIDISCIPLINARY SCIENCES-
CiteScore
2.10
自引率
0.00%
发文量
992
期刊介绍: JoVE, the Journal of Visualized Experiments, is the world''s first peer reviewed scientific video journal. Established in 2006, JoVE is devoted to publishing scientific research in a visual format to help researchers overcome two of the biggest challenges facing the scientific research community today; poor reproducibility and the time and labor intensive nature of learning new experimental techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信