SentemQC - A novel and cost-efficient method for quality assurance and quality control of high-resolution frequency sensor data in fresh waters.

Open research Europe Pub Date : 2024-11-07 eCollection Date: 2024-01-01 DOI:10.12688/openreseurope.18134.1
Sofie Gyritia Madsen Van't Veen, Brian Kronvang, Joachim Audet, Thomas Alexander Davidson, Erik Jeppesen, Esben Astrup Kristensen, Søren Erik Larsen, Jane Rosenstand Laugesen, Eti Ester Levi, Anders Nielsen, Peter Mejlhede Andersen
{"title":"SentemQC - A novel and cost-efficient method for quality assurance and quality control of high-resolution frequency sensor data in fresh waters.","authors":"Sofie Gyritia Madsen Van't Veen, Brian Kronvang, Joachim Audet, Thomas Alexander Davidson, Erik Jeppesen, Esben Astrup Kristensen, Søren Erik Larsen, Jane Rosenstand Laugesen, Eti Ester Levi, Anders Nielsen, Peter Mejlhede Andersen","doi":"10.12688/openreseurope.18134.1","DOIUrl":null,"url":null,"abstract":"<p><p>The growing use of sensors in fresh waters for water quality measurements generates an increasingly large amount of data that requires quality assurance (QA)/quality control (QC) before the results can be exploited. Such a process is often resource-intensive and may not be consistent across users and sensors. SentemQC (QA-QC of high temporal resolution sensor data) is a cost-efficient, and open-source Python approach developed to ensure the quality of sensor data by performing data QA and QC on large volumes of high-frequency (HF) sensor data. The SentemQC method is computationally efficient and features a six-step user-friendly setup for anomaly detection. The method marks anomalies in data using five moving windows. These windows connect each data point to neighboring points, including those further away in the moving window. As a result, the method can mark not only individual outliers but also clusters of anomalies. Our analysis shows that the method is robust for detecting anomalies in HF sensor data from multiple water quality sensors measuring nitrate, turbidity, oxygen, and pH. The sensors were installed in three different freshwater ecosystems (two streams and one lake) and experimental lake mesocosms. Sensor data from the stream stations yielded anomaly percentages of 0.1%, 0.1%, and 0.2%, which were lower than the anomaly percentages of 0.5%, 0.6%, and 0.8% for the sensors in Lake and mesocosms, respectively. While the sensors in this study contained relatively few anomalies (<2%), they may represent a best-case scenario in terms of use and maintenance. SentemQC allows the user to include the individual sensor uncertainty/accuracy when performing QA-QC. However, SentemQC cannot function independently. Additional QA-QC steps are crucial, including calibration of the sensor data to correct for zero offsets and implementation of gap-filling methods prior to the use of the sensor data for determination of final real-time concentrations and load calculations.</p>","PeriodicalId":74359,"journal":{"name":"Open research Europe","volume":"4 ","pages":"244"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11803384/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open research Europe","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12688/openreseurope.18134.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The growing use of sensors in fresh waters for water quality measurements generates an increasingly large amount of data that requires quality assurance (QA)/quality control (QC) before the results can be exploited. Such a process is often resource-intensive and may not be consistent across users and sensors. SentemQC (QA-QC of high temporal resolution sensor data) is a cost-efficient, and open-source Python approach developed to ensure the quality of sensor data by performing data QA and QC on large volumes of high-frequency (HF) sensor data. The SentemQC method is computationally efficient and features a six-step user-friendly setup for anomaly detection. The method marks anomalies in data using five moving windows. These windows connect each data point to neighboring points, including those further away in the moving window. As a result, the method can mark not only individual outliers but also clusters of anomalies. Our analysis shows that the method is robust for detecting anomalies in HF sensor data from multiple water quality sensors measuring nitrate, turbidity, oxygen, and pH. The sensors were installed in three different freshwater ecosystems (two streams and one lake) and experimental lake mesocosms. Sensor data from the stream stations yielded anomaly percentages of 0.1%, 0.1%, and 0.2%, which were lower than the anomaly percentages of 0.5%, 0.6%, and 0.8% for the sensors in Lake and mesocosms, respectively. While the sensors in this study contained relatively few anomalies (<2%), they may represent a best-case scenario in terms of use and maintenance. SentemQC allows the user to include the individual sensor uncertainty/accuracy when performing QA-QC. However, SentemQC cannot function independently. Additional QA-QC steps are crucial, including calibration of the sensor data to correct for zero offsets and implementation of gap-filling methods prior to the use of the sensor data for determination of final real-time concentrations and load calculations.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信