Effects of drought and re-irrigation on osmotic regulator and hydraulic function of Pinus tabuliformis.

Q3 Environmental Science
Ji-Rong Mao, Yan Zeng, Xin-Yu Xu, Jing Liang, Ying Liu
{"title":"Effects of drought and re-irrigation on osmotic regulator and hydraulic function of <i>Pinus tabuliformis</i>.","authors":"Ji-Rong Mao, Yan Zeng, Xin-Yu Xu, Jing Liang, Ying Liu","doi":"10.13287/j.1001-9332.202411.019","DOIUrl":null,"url":null,"abstract":"<p><p>Understanding how plants respond to drought and re-irrigation is crucial for the successful breeding of seedlings in artificial forests in semi-arid regions of China, as the frequency of high-intensity drought events has significantly increased in these areas. We conducted an experiment with four drought stress treatments, including no reduction in rainfall (control), 25% reduction in rainfall (mild stress), 50% reduction in rainfall (moderate stress), and 75% reduction in rainfall (severe stress). We subjected two-year-old <i>Pinus tabuliformis</i> seedlings to a long-term drought stress period of 20 months, followed by a high-intensity drought treatment (continuous 80 days with 100% rainfall reduction). Additionally, we administered re-irrigation treatments lasting 10 days on days 10, 40, 70, and 80 of the high-intensity drought period. We aimed to investigate the relationships among hydraulic conductivity, percentage loss of hydraulic conductivity, and the content of osmotic adjustment substances in new branches of <i>P</i>. <i>tabuliformis</i>, as well as their responses to drought. The results showed that under long-term drought stress, the water potential threshold at which hydraulic conductivity loss reached 50% for new branches under mild stress was -2.04 MPa, which was significantly lower than that of the other treatments. After 80 days of high-intensity drought, the proline content in new branches increased significantly by 19.9% to 226.0% compared to the initial value. Redundancy analysis showed that proline explained 40.4% of the variability in hydraulic function and was the primary osmotic adjustment substance during high-intensity drought. During re-irrigation, soluble sugars explained 29.4% of the variability in hydraulic function and were the main osmotic adjustment substances in this stage. Different factors accounted for the differences in hydraulic function of <i>P</i>. <i>tabuliformis</i> during drought and re-irrigation. Mild stress enhanced the embolism resistance under the long-term drought. New branches of <i>P</i>. <i>tabuliformis</i> maintained normal water transport by accumulating proline in response to high-intensity drought. During re-irrigation, soluble sugars were significantly positively correlated with hydraulic conductivity, which facilitated embolism repair and enhanced the recovery of hydraulic function.</p>","PeriodicalId":35942,"journal":{"name":"应用生态学报","volume":"35 11","pages":"2959-2965"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"应用生态学报","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.13287/j.1001-9332.202411.019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0

Abstract

Understanding how plants respond to drought and re-irrigation is crucial for the successful breeding of seedlings in artificial forests in semi-arid regions of China, as the frequency of high-intensity drought events has significantly increased in these areas. We conducted an experiment with four drought stress treatments, including no reduction in rainfall (control), 25% reduction in rainfall (mild stress), 50% reduction in rainfall (moderate stress), and 75% reduction in rainfall (severe stress). We subjected two-year-old Pinus tabuliformis seedlings to a long-term drought stress period of 20 months, followed by a high-intensity drought treatment (continuous 80 days with 100% rainfall reduction). Additionally, we administered re-irrigation treatments lasting 10 days on days 10, 40, 70, and 80 of the high-intensity drought period. We aimed to investigate the relationships among hydraulic conductivity, percentage loss of hydraulic conductivity, and the content of osmotic adjustment substances in new branches of P. tabuliformis, as well as their responses to drought. The results showed that under long-term drought stress, the water potential threshold at which hydraulic conductivity loss reached 50% for new branches under mild stress was -2.04 MPa, which was significantly lower than that of the other treatments. After 80 days of high-intensity drought, the proline content in new branches increased significantly by 19.9% to 226.0% compared to the initial value. Redundancy analysis showed that proline explained 40.4% of the variability in hydraulic function and was the primary osmotic adjustment substance during high-intensity drought. During re-irrigation, soluble sugars explained 29.4% of the variability in hydraulic function and were the main osmotic adjustment substances in this stage. Different factors accounted for the differences in hydraulic function of P. tabuliformis during drought and re-irrigation. Mild stress enhanced the embolism resistance under the long-term drought. New branches of P. tabuliformis maintained normal water transport by accumulating proline in response to high-intensity drought. During re-irrigation, soluble sugars were significantly positively correlated with hydraulic conductivity, which facilitated embolism repair and enhanced the recovery of hydraulic function.

求助全文
约1分钟内获得全文 求助全文
来源期刊
应用生态学报
应用生态学报 Environmental Science-Ecology
CiteScore
2.50
自引率
0.00%
发文量
11393
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信