Single-Ion-Conducting Polymer Electrolytes for Rechargeable Alkaline Ag-Zn Batteries.

IF 3.3 Q2 CHEMISTRY, MULTIDISCIPLINARY
ACS Organic & Inorganic Au Pub Date : 2024-12-03 eCollection Date: 2025-02-05 DOI:10.1021/acsorginorgau.4c00053
Hunter O Ford, Brian L Chaloux, Nishani K Jayakody, Christopher A Klug, Eric G Ruzicka, Meghanne Tighe, Ryan H DeBlock, Jeffrey W Long, Debra R Rolison, Megan Bourg Sassin
{"title":"Single-Ion-Conducting Polymer Electrolytes for Rechargeable Alkaline Ag-Zn Batteries.","authors":"Hunter O Ford, Brian L Chaloux, Nishani K Jayakody, Christopher A Klug, Eric G Ruzicka, Meghanne Tighe, Ryan H DeBlock, Jeffrey W Long, Debra R Rolison, Megan Bourg Sassin","doi":"10.1021/acsorginorgau.4c00053","DOIUrl":null,"url":null,"abstract":"<p><p>Recently, we reported on the synthesis and performance of a cross-linked single-anion-conducting solid-state electrolyte (SSE) based on quaternized poly(dimethylaminomethylstyrene) (pDMAMS<sup>+</sup>) via initiated chemical vapor deposition (iCVD). In the homopolymer pDMAMS<sup>+</sup>-based SSE, the cross-linking occurs at the positively charged ammonium cation sites, hindering ion transport and conductivity. To improve ionic conductivity, we now report on a copolymer system, comprising DMAMS and divinylbenzene (DVB). Incorporating DVB moves the cross-links to the polymer backbone leaving the quaternary ammonium cation and its paired anion with maximal dynamic freedom. We evaluate the structure-transport relationships of a series of p[DVB-DMAMS] copolymers with varying DVB content using electrochemical impedance spectroscopy, nuclear magnetic resonance spectroscopy, and small- and wide-angle X-ray scattering. Our best composition containing 2.5 wt % DVB provides 1 mS cm<sup>-1</sup> single-ion OH<sup>-</sup> conductivity under hydrated conditions, a significant improvement over the 0.01 mS cm<sup>-1</sup> of the hydrated homopolymer pDMAMS<sup>+</sup> SSE. All copolymer compositions support Zn-ZnO and Ag-Zn electrochemical reduction-oxidation (redox) chemistry, which demonstrates the feasibility of a Ag-Zn battery using an alkaline single-ion-conducting SSE. Galvanostatic cycling shows some transport of Ag through the polymer electrolyte, however the deleterious effects of Ag migration can be partially mitigated by transitioning from a two-dimensional (2D) planar electrode to a 3D sponge electrode. With these promising results, the foundation is laid for using single-anion-conducting SSEs within alkaline Zn batteries.</p>","PeriodicalId":29797,"journal":{"name":"ACS Organic & Inorganic Au","volume":"5 1","pages":"37-46"},"PeriodicalIF":3.3000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11803467/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Organic & Inorganic Au","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/acsorginorgau.4c00053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/5 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Recently, we reported on the synthesis and performance of a cross-linked single-anion-conducting solid-state electrolyte (SSE) based on quaternized poly(dimethylaminomethylstyrene) (pDMAMS+) via initiated chemical vapor deposition (iCVD). In the homopolymer pDMAMS+-based SSE, the cross-linking occurs at the positively charged ammonium cation sites, hindering ion transport and conductivity. To improve ionic conductivity, we now report on a copolymer system, comprising DMAMS and divinylbenzene (DVB). Incorporating DVB moves the cross-links to the polymer backbone leaving the quaternary ammonium cation and its paired anion with maximal dynamic freedom. We evaluate the structure-transport relationships of a series of p[DVB-DMAMS] copolymers with varying DVB content using electrochemical impedance spectroscopy, nuclear magnetic resonance spectroscopy, and small- and wide-angle X-ray scattering. Our best composition containing 2.5 wt % DVB provides 1 mS cm-1 single-ion OH- conductivity under hydrated conditions, a significant improvement over the 0.01 mS cm-1 of the hydrated homopolymer pDMAMS+ SSE. All copolymer compositions support Zn-ZnO and Ag-Zn electrochemical reduction-oxidation (redox) chemistry, which demonstrates the feasibility of a Ag-Zn battery using an alkaline single-ion-conducting SSE. Galvanostatic cycling shows some transport of Ag through the polymer electrolyte, however the deleterious effects of Ag migration can be partially mitigated by transitioning from a two-dimensional (2D) planar electrode to a 3D sponge electrode. With these promising results, the foundation is laid for using single-anion-conducting SSEs within alkaline Zn batteries.

求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Organic & Inorganic Au
ACS Organic & Inorganic Au 有机化学、无机化学-
CiteScore
4.10
自引率
0.00%
发文量
0
期刊介绍: ACS Organic & Inorganic Au is an open access journal that publishes original experimental and theoretical/computational studies on organic organometallic inorganic crystal growth and engineering and organic process chemistry. Short letters comprehensive articles reviews and perspectives are welcome on topics that include:Organic chemistry Organometallic chemistry Inorganic Chemistry and Organic Process Chemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信