Observation of Copropagating Chiral Zero Modes in Magnetic Photonic Crystals.

IF 8.1 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Zhongfu Li, Shaojie Ma, Shuwei Li, Oubo You, Yachao Liu, Qingdong Yang, Yuanjiang Xiang, Peiheng Zhou, Shuang Zhang
{"title":"Observation of Copropagating Chiral Zero Modes in Magnetic Photonic Crystals.","authors":"Zhongfu Li, Shaojie Ma, Shuwei Li, Oubo You, Yachao Liu, Qingdong Yang, Yuanjiang Xiang, Peiheng Zhou, Shuang Zhang","doi":"10.1103/PhysRevLett.134.033802","DOIUrl":null,"url":null,"abstract":"<p><p>Topological singularities, such as Weyl points (WPs) and Dirac points, can give rise to unidirectional propagation channels known as chiral zero modes (CZMs) when subject to a magnetic field. CZMs, as distinct zeroth Landau levels (bulk modes) with high degeneracy, are responsible for intriguing phenomena like the chiral anomaly in quantum systems. The propagation direction of each CZM is determined by both the applied magnetic field and the topological charge of the singularity point. While counterpropagating CZMs have been observed in 2D and 3D systems, the realization of copropagating CZMs has remained elusive. Here, we present the first experimental observation of copropagating CZMs in magnetic photonic crystals hosting a single pair of ideal Weyl points. By manipulating the crystal's structural configuration and applying a uniform bias magnetic field, we spatially alter the locations of the WPs, creating pseudo-magnetic fields of opposite directions for different WPs. This arrangement results in a pair of CZMs that possess the same group velocity and copropagate. Our work opens up new possibilities for the topological manipulation of wave propagation and may lead to advancements in optical waveguides, switches, and various other applications.</p>","PeriodicalId":20069,"journal":{"name":"Physical review letters","volume":"134 3","pages":"033802"},"PeriodicalIF":8.1000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/PhysRevLett.134.033802","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Topological singularities, such as Weyl points (WPs) and Dirac points, can give rise to unidirectional propagation channels known as chiral zero modes (CZMs) when subject to a magnetic field. CZMs, as distinct zeroth Landau levels (bulk modes) with high degeneracy, are responsible for intriguing phenomena like the chiral anomaly in quantum systems. The propagation direction of each CZM is determined by both the applied magnetic field and the topological charge of the singularity point. While counterpropagating CZMs have been observed in 2D and 3D systems, the realization of copropagating CZMs has remained elusive. Here, we present the first experimental observation of copropagating CZMs in magnetic photonic crystals hosting a single pair of ideal Weyl points. By manipulating the crystal's structural configuration and applying a uniform bias magnetic field, we spatially alter the locations of the WPs, creating pseudo-magnetic fields of opposite directions for different WPs. This arrangement results in a pair of CZMs that possess the same group velocity and copropagate. Our work opens up new possibilities for the topological manipulation of wave propagation and may lead to advancements in optical waveguides, switches, and various other applications.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Physical review letters
Physical review letters 物理-物理:综合
CiteScore
16.50
自引率
7.00%
发文量
2673
审稿时长
2.2 months
期刊介绍: Physical review letters(PRL)covers the full range of applied, fundamental, and interdisciplinary physics research topics: General physics, including statistical and quantum mechanics and quantum information Gravitation, astrophysics, and cosmology Elementary particles and fields Nuclear physics Atomic, molecular, and optical physics Nonlinear dynamics, fluid dynamics, and classical optics Plasma and beam physics Condensed matter and materials physics Polymers, soft matter, biological, climate and interdisciplinary physics, including networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信