{"title":"Structural determination of mugineic acid, an iron(III)-chelating substance secreted from graminaceous plants for efficient iron uptake.","authors":"Takanori Kobayashi, Naoko K Nishizawa","doi":"10.2183/pjab.101.007","DOIUrl":null,"url":null,"abstract":"<p><p>Iron is an essential element for organisms, but its solubility in soil is often extremely low. Previously, plants were considered to take up iron only after its reduction to ferrous ions. Takagi reported that oat and rice secrete chelating substances that solubilize ferric iron in the rhizosphere for efficient iron uptake. In 1978, Takemoto et al. reported the chemical structure of an iron-chelating compound secreted from barley roots, designated as mugineic acid. Mugineic acid and its derivatives, collectively known as mugineic acid family phytosiderophores (MAs), chelate ferric iron using octahedral hexacoordination. The specific iron uptake system by MAs in graminaceous plants was later classified by Römheld and Marschner as Strategy II, in contrast to Strategy I for reduction-based iron uptake by non-graminaceous plants. Further studies on MAs by Japanese researchers led to the identification of their biosynthetic pathways, corresponding enzymes and encoding genes, their regulation mechanisms, and the production of iron deficiency-tolerant and iron-rich crops.</p>","PeriodicalId":20707,"journal":{"name":"Proceedings of the Japan Academy. Series B, Physical and Biological Sciences","volume":"101 2","pages":"55-67"},"PeriodicalIF":4.4000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11893220/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Japan Academy. Series B, Physical and Biological Sciences","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.2183/pjab.101.007","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Iron is an essential element for organisms, but its solubility in soil is often extremely low. Previously, plants were considered to take up iron only after its reduction to ferrous ions. Takagi reported that oat and rice secrete chelating substances that solubilize ferric iron in the rhizosphere for efficient iron uptake. In 1978, Takemoto et al. reported the chemical structure of an iron-chelating compound secreted from barley roots, designated as mugineic acid. Mugineic acid and its derivatives, collectively known as mugineic acid family phytosiderophores (MAs), chelate ferric iron using octahedral hexacoordination. The specific iron uptake system by MAs in graminaceous plants was later classified by Römheld and Marschner as Strategy II, in contrast to Strategy I for reduction-based iron uptake by non-graminaceous plants. Further studies on MAs by Japanese researchers led to the identification of their biosynthetic pathways, corresponding enzymes and encoding genes, their regulation mechanisms, and the production of iron deficiency-tolerant and iron-rich crops.
期刊介绍:
The Proceedings of the Japan Academy Ser. B (PJA-B) is a scientific publication of the Japan Academy with a 90-year history, and covers all branches of natural sciences, except for mathematics, which is covered by the PJA-A. It is published ten times a year and is distributed widely throughout the world and can be read and obtained free of charge through the world wide web.