Machine Learning Approach and Model for Predicting Proton Stopping Power Ratio and Other Parameters Using Computed Tomography Images.

IF 0.7 Q4 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Journal of Medical Physics Pub Date : 2024-10-01 Epub Date: 2024-12-18 DOI:10.4103/jmp.jmp_120_24
Charles Ekene Chika
{"title":"Machine Learning Approach and Model for Predicting Proton Stopping Power Ratio and Other Parameters Using Computed Tomography Images.","authors":"Charles Ekene Chika","doi":"10.4103/jmp.jmp_120_24","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>The purpose of this study was to accurately estimate proton stopping power ratio (SPR), relative electron density <i>ρ</i> <sub>e</sub>, effective atomic number (<i>Z</i> <sub>eff</sub>), and mean excitation energy (<i>I</i>) using one simple robust model and design a machine learning algorithm that will lead to automation.</p><p><strong>Methods: </strong>Empirical relationships between computed tomography (CT) number and SPR, <i>ρ</i> <sub>e</sub> (<i>Z</i> <sub>eff</sub>) and <i>I</i> were used to formulate a model that predicts all the four parameters using linear attenuation coefficients which can be converted to CT numbers. The results of these models were compared with the results of other existing models. Thirty-three ICRU human tissues were used as modeling data and 12 Gammex inserts as testing data for the machine learning algorithm designed. More ways of tissue classification were introduced to improve accuracy. In the examples, the dual energy methods were implemented using 80 kVp and 150 kVP/Sn.</p><p><strong>Results: </strong>The proposed method gave modeling root mean square error (RMSE) near 1% at maximum for the case of SPR and <i>ρ</i> <sub>e</sub> for both single and dual-energy CT approaches considered with modeling RMSE of 0.32% for <i>ρ</i> <sub>e</sub> and 0.38% for SPR as modeling RMSE with room for improvement (this can be done by adjusting the model number of terms as well as the parameters). The method was able to achieve modeling RMSE of 1.11% for <i>I</i> and 1.66% for <i>Z</i> <sub>ef</sub> <sub>f</sub>. The mean error for all the estimated quantities was near 0.00%. In most cases, the proposed method has lower testing RMSE and mean error compare to the other methods presented in the study.</p><p><strong>Conclusion: </strong>The proposed method proves to be more flexible and robust among all presented methods since it has lower testing error in most cases and can be improved based on data using the machine learning algorithm. The algorithm can also improve estimation by adjusting the model as well as aid in automation and it's easy to implement.</p>","PeriodicalId":51719,"journal":{"name":"Journal of Medical Physics","volume":"49 4","pages":"519-530"},"PeriodicalIF":0.7000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11801089/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4103/jmp.jmp_120_24","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/18 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: The purpose of this study was to accurately estimate proton stopping power ratio (SPR), relative electron density ρ e, effective atomic number (Z eff), and mean excitation energy (I) using one simple robust model and design a machine learning algorithm that will lead to automation.

Methods: Empirical relationships between computed tomography (CT) number and SPR, ρ e (Z eff) and I were used to formulate a model that predicts all the four parameters using linear attenuation coefficients which can be converted to CT numbers. The results of these models were compared with the results of other existing models. Thirty-three ICRU human tissues were used as modeling data and 12 Gammex inserts as testing data for the machine learning algorithm designed. More ways of tissue classification were introduced to improve accuracy. In the examples, the dual energy methods were implemented using 80 kVp and 150 kVP/Sn.

Results: The proposed method gave modeling root mean square error (RMSE) near 1% at maximum for the case of SPR and ρ e for both single and dual-energy CT approaches considered with modeling RMSE of 0.32% for ρ e and 0.38% for SPR as modeling RMSE with room for improvement (this can be done by adjusting the model number of terms as well as the parameters). The method was able to achieve modeling RMSE of 1.11% for I and 1.66% for Z ef f. The mean error for all the estimated quantities was near 0.00%. In most cases, the proposed method has lower testing RMSE and mean error compare to the other methods presented in the study.

Conclusion: The proposed method proves to be more flexible and robust among all presented methods since it has lower testing error in most cases and can be improved based on data using the machine learning algorithm. The algorithm can also improve estimation by adjusting the model as well as aid in automation and it's easy to implement.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Medical Physics
Journal of Medical Physics RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING-
CiteScore
1.10
自引率
11.10%
发文量
55
审稿时长
30 weeks
期刊介绍: JOURNAL OF MEDICAL PHYSICS is the official journal of Association of Medical Physicists of India (AMPI). The association has been bringing out a quarterly publication since 1976. Till the end of 1993, it was known as Medical Physics Bulletin, which then became Journal of Medical Physics. The main objective of the Journal is to serve as a vehicle of communication to highlight all aspects of the practice of medical radiation physics. The areas covered include all aspects of the application of radiation physics to biological sciences, radiotherapy, radiodiagnosis, nuclear medicine, dosimetry and radiation protection. Papers / manuscripts dealing with the aspects of physics related to cancer therapy / radiobiology also fall within the scope of the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信