Optimal inversion model for cultivated land soil salinity based on UAV hyperspectral data.

Q3 Environmental Science
Jun-Kai Cheng, Xiu-Li Feng, Li-Bo Chen, Tian-Yu Gao, Mei-Jin DU, Zhi-Yuan Liu
{"title":"Optimal inversion model for cultivated land soil salinity based on UAV hyperspectral data.","authors":"Jun-Kai Cheng, Xiu-Li Feng, Li-Bo Chen, Tian-Yu Gao, Mei-Jin DU, Zhi-Yuan Liu","doi":"10.13287/j.1001-9332.202411.012","DOIUrl":null,"url":null,"abstract":"<p><p>Soil salinization is a common factor constraining agricultural production safety, achieving rapid and accurate acquisition of cultivated land soil salinity information is of paramount importance for ameliorating and resolving soil salinization problems. In this study, with unmanned aerial vehicle (UAV) hyperspectral remote sensing data as the data source, we selected feature band subsets using various spectral transformation data based on different land use statuses of cultivated land, to compare the model accuracies of Support Vector Machine (SVR), Back Propagation Neural Network (BPNN) and Random Forest regression (RFR), and propose the optimal inversion model for regional cultivated land soil salinity. The results showed that the inversion model combining first-order differential spectral transformation data with RFR achieved the highest accuracy. Extracting feature bands separately for cultivated land with different land use statuses would ensure a higher overall model accuracy, with a coefficient of determination of 0.885, a root mean square error of 0.413, and a ratio of performance to deviation of 4.208. Our results could provide a reference for achieving high-precision inversion of soil salinity in cultivated land by UAV hyperspectral technology, and offer scientific support for the prevention and control of soil salinization in cultivated land.</p>","PeriodicalId":35942,"journal":{"name":"应用生态学报","volume":"35 11","pages":"3085-3094"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"应用生态学报","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.13287/j.1001-9332.202411.012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0

Abstract

Soil salinization is a common factor constraining agricultural production safety, achieving rapid and accurate acquisition of cultivated land soil salinity information is of paramount importance for ameliorating and resolving soil salinization problems. In this study, with unmanned aerial vehicle (UAV) hyperspectral remote sensing data as the data source, we selected feature band subsets using various spectral transformation data based on different land use statuses of cultivated land, to compare the model accuracies of Support Vector Machine (SVR), Back Propagation Neural Network (BPNN) and Random Forest regression (RFR), and propose the optimal inversion model for regional cultivated land soil salinity. The results showed that the inversion model combining first-order differential spectral transformation data with RFR achieved the highest accuracy. Extracting feature bands separately for cultivated land with different land use statuses would ensure a higher overall model accuracy, with a coefficient of determination of 0.885, a root mean square error of 0.413, and a ratio of performance to deviation of 4.208. Our results could provide a reference for achieving high-precision inversion of soil salinity in cultivated land by UAV hyperspectral technology, and offer scientific support for the prevention and control of soil salinization in cultivated land.

求助全文
约1分钟内获得全文 求助全文
来源期刊
应用生态学报
应用生态学报 Environmental Science-Ecology
CiteScore
2.50
自引率
0.00%
发文量
11393
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信