Biocompatible glycolipid derived from bhilawanol as an antibiofilm agent and a promising platform for drug delivery.

IF 4.1 4区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Tohira Banoo, Abhijit Ghosh, Priyasha Mishra, Sanhita Roy, Subbiah Nagarajan
{"title":"Biocompatible glycolipid derived from bhilawanol as an antibiofilm agent and a promising platform for drug delivery.","authors":"Tohira Banoo, Abhijit Ghosh, Priyasha Mishra, Sanhita Roy, Subbiah Nagarajan","doi":"10.1039/d4md00828f","DOIUrl":null,"url":null,"abstract":"<p><p>Stimuli-responsive smart materials for biomedical applications have gained significant attention because of their potential for selectivity and sensitivity in biological systems. Even though ample stimuli-responsive materials are available, the use of traditional Ayurvedic compounds in the fabrication of pharmaceuticals is limited. Among various materials, gels are one of the essential classes because of their molecular-level tunability with little effort from the environment. In this study, we report a simple synthesis method for multifunctional glycolipids using a starting material derived from biologically significant natural molecules and carbohydrates in good yields. The synthesized glycolipids were prone to form a hydrogel by creating a 3D fibrous architecture. The mechanism of bottom-up assembly involving the molecular-level interaction was studied in detail using SEM, XRD, FTIR, and NMR spectroscopy. The stability, processability, and thixotropic behavior of the hydrogel were investigated through rheological measurements, and it was identified to be more suitable for biomedical applications. To evaluate the potential application of the self-assembled hydrogel in the field of medicine, we encapsulated a natural drug, curcumin, into a gel and studied its pH as a stimuli-responsive release profile. Interestingly, the encapsulated drug was released both in acidic and basic pH levels at a different rate, as identified using UV-vis spectroscopy. It is worth mentioning that the gelator used for fabricating smart soft materials displays significant potential in selectively compacting the biofilm formed by <i>Streptococcus pneumoniae</i>. We believe that the reported multifunctional hydrogel derived from bhilawanol-based glycolipid holds great promise in medicine.</p>","PeriodicalId":21462,"journal":{"name":"RSC medicinal chemistry","volume":" ","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11799929/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC medicinal chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1039/d4md00828f","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Stimuli-responsive smart materials for biomedical applications have gained significant attention because of their potential for selectivity and sensitivity in biological systems. Even though ample stimuli-responsive materials are available, the use of traditional Ayurvedic compounds in the fabrication of pharmaceuticals is limited. Among various materials, gels are one of the essential classes because of their molecular-level tunability with little effort from the environment. In this study, we report a simple synthesis method for multifunctional glycolipids using a starting material derived from biologically significant natural molecules and carbohydrates in good yields. The synthesized glycolipids were prone to form a hydrogel by creating a 3D fibrous architecture. The mechanism of bottom-up assembly involving the molecular-level interaction was studied in detail using SEM, XRD, FTIR, and NMR spectroscopy. The stability, processability, and thixotropic behavior of the hydrogel were investigated through rheological measurements, and it was identified to be more suitable for biomedical applications. To evaluate the potential application of the self-assembled hydrogel in the field of medicine, we encapsulated a natural drug, curcumin, into a gel and studied its pH as a stimuli-responsive release profile. Interestingly, the encapsulated drug was released both in acidic and basic pH levels at a different rate, as identified using UV-vis spectroscopy. It is worth mentioning that the gelator used for fabricating smart soft materials displays significant potential in selectively compacting the biofilm formed by Streptococcus pneumoniae. We believe that the reported multifunctional hydrogel derived from bhilawanol-based glycolipid holds great promise in medicine.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.80
自引率
2.40%
发文量
129
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信