Synthesis, characterization, and application of methylene blue functionalized reduced graphene oxide for photodynamic therapy in root canal treatment.

IF 1.2 4区 医学 Q2 MEDICINE, GENERAL & INTERNAL
Rizwan Jouhar, Mohamad Syahrizal Halim, Muhammad Adeel Ahmed, Faheem Shah, Sayed A Quadri
{"title":"Synthesis, characterization, and application of methylene blue functionalized reduced graphene oxide for photodynamic therapy in root canal treatment.","authors":"Rizwan Jouhar, Mohamad Syahrizal Halim, Muhammad Adeel Ahmed, Faheem Shah, Sayed A Quadri","doi":"10.12669/pjms.41.2.11001","DOIUrl":null,"url":null,"abstract":"<p><strong>Background & objective: </strong>Root canal infections are challenging to eradicate with conventional methods due to their complexity. Traditional chemical irrigants often fail to reach all bacterial colonies. Methylene blue (MB), used in photoactivated disinfection (PAD), generates reactive oxygen species (ROS) upon light activation, effectively killing bacteria. This study aimed to synthesize, characterize, and explore MB-functionalized reduced graphene oxide (MB/rGO) for enhanced photoactivated disinfection in root canal treatment.</p><p><strong>Methods: </strong>This in-vitro study was conducted from April 2024 to September 2024 at Universiti Sains Malaysia and King Faisal University. Graphene oxide (GO) was reduced by dispersing GO in deionized water with sonication, followed by adding sodium hydroxide (NaOH) under vigorous stirring. The suspension obtained was centrifuged, washed, and dried to yield reduced graphene oxide (rGO). For functionalization, rGO was dispersed in ethanol and mixed with methylene blue (MB) solution, followed by stirring and drying to obtain MB-functionalized rGO. The antibacterial and antifungal activities of MB alone and in combination with rGO, with or without laser exposure, were tested using the agar well diffusion method. The paired sample t-test was used to compare the inhibition zones for different treatment groups of <i>E. faecalis</i> and <i>C. albicans</i>.</p><p><strong>Results: </strong>FTIR analysis confirmed successful functionalization by identifying specific functional groups of rGO and MB. Similarly, Raman spectroscopy indicated that GO-MB had an intermediate level of defects, and SEM analysis confirmed slight morphological changes with MB molecules attached to the rGO surface. Moreover, the antimicrobial test revealed that MB/rGO with laser performed significantly better (<i>p</i>=0.042) than MB/rGO without laser and MB with laser group (<i>p</i>=0.034) against <i>E. faecalis</i>.</p><p><strong>Conclusions: </strong>The functionalization of MB with rGO and its application with laser treatment significantly enhanced antimicrobial and antifungal activity, suggesting potential benefits for endodontic treatments and other dental applications.</p>","PeriodicalId":19958,"journal":{"name":"Pakistan Journal of Medical Sciences","volume":"41 2","pages":"519-524"},"PeriodicalIF":1.2000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11803785/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pakistan Journal of Medical Sciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.12669/pjms.41.2.11001","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
引用次数: 0

Abstract

Background & objective: Root canal infections are challenging to eradicate with conventional methods due to their complexity. Traditional chemical irrigants often fail to reach all bacterial colonies. Methylene blue (MB), used in photoactivated disinfection (PAD), generates reactive oxygen species (ROS) upon light activation, effectively killing bacteria. This study aimed to synthesize, characterize, and explore MB-functionalized reduced graphene oxide (MB/rGO) for enhanced photoactivated disinfection in root canal treatment.

Methods: This in-vitro study was conducted from April 2024 to September 2024 at Universiti Sains Malaysia and King Faisal University. Graphene oxide (GO) was reduced by dispersing GO in deionized water with sonication, followed by adding sodium hydroxide (NaOH) under vigorous stirring. The suspension obtained was centrifuged, washed, and dried to yield reduced graphene oxide (rGO). For functionalization, rGO was dispersed in ethanol and mixed with methylene blue (MB) solution, followed by stirring and drying to obtain MB-functionalized rGO. The antibacterial and antifungal activities of MB alone and in combination with rGO, with or without laser exposure, were tested using the agar well diffusion method. The paired sample t-test was used to compare the inhibition zones for different treatment groups of E. faecalis and C. albicans.

Results: FTIR analysis confirmed successful functionalization by identifying specific functional groups of rGO and MB. Similarly, Raman spectroscopy indicated that GO-MB had an intermediate level of defects, and SEM analysis confirmed slight morphological changes with MB molecules attached to the rGO surface. Moreover, the antimicrobial test revealed that MB/rGO with laser performed significantly better (p=0.042) than MB/rGO without laser and MB with laser group (p=0.034) against E. faecalis.

Conclusions: The functionalization of MB with rGO and its application with laser treatment significantly enhanced antimicrobial and antifungal activity, suggesting potential benefits for endodontic treatments and other dental applications.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Pakistan Journal of Medical Sciences
Pakistan Journal of Medical Sciences 医学-医学:内科
CiteScore
4.10
自引率
9.10%
发文量
363
审稿时长
3-6 weeks
期刊介绍: It is a peer reviewed medical journal published regularly since 1984. It was previously known as quarterly "SPECIALIST" till December 31st 1999. It publishes original research articles, review articles, current practices, short communications & case reports. It attracts manuscripts not only from within Pakistan but also from over fifty countries from abroad. Copies of PJMS are sent to all the import medical libraries all over Pakistan and overseas particularly in South East Asia and Asia Pacific besides WHO EMRO Region countries. Eminent members of the medical profession at home and abroad regularly contribute their write-ups, manuscripts in our publications. We pursue an independent editorial policy, which allows an opportunity to the healthcare professionals to express their views without any fear or favour. That is why many opinion makers among the medical and pharmaceutical profession use this publication to communicate their viewpoint.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信