Madhumita Pal, Ranjan K Mohapatra, Ashish K Sarangi, Alok Ranjan Sahu, Snehasish Mishra, Alok Patel, Sushil Kumar Bhoi, Ashraf Y Elnaggar, Islam H El Azab, Mohammed Alissa, Salah M El-Bahy
{"title":"A comparative analysis of the binary and multiclass classified chest X-ray images of pneumonia and COVID-19 with ML and DL models.","authors":"Madhumita Pal, Ranjan K Mohapatra, Ashish K Sarangi, Alok Ranjan Sahu, Snehasish Mishra, Alok Patel, Sushil Kumar Bhoi, Ashraf Y Elnaggar, Islam H El Azab, Mohammed Alissa, Salah M El-Bahy","doi":"10.1515/med-2024-1110","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The highly infectious coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2, the seventh coronavirus. It is the longest pandemic in recorded history worldwide. Many countries are still reporting COVID-19 cases even in the fifth year of its emergence.</p><p><strong>Objective: </strong>The performance of various machine learning (ML) and deep learning (DL) models was studied for image-based classification of the lungs infected with COVID-19, pneumonia (viral and bacterial), and normal cases from the chest X-rays (CXRs).</p><p><strong>Methods: </strong>The <i>K</i>-nearest neighbour and logistics regression as the two ML models, and Visual Geometry Group-19, Vision transformer, and ConvMixer as the three DL models were included in the investigation to compare the brevity of the detection and classification of the cases.</p><p><strong>Results: </strong>Among the investigated models, ConvMixer returned the best result in terms of accuracy, recall, precision, <i>F</i>1-score and area under the curve for both binary as well as multiclass classification. The pre-trained ConvMixer model outperformed the other four models in classifying. As per the performance observations, there was 97.1% accuracy for normal and COVID-19 + pneumonia-infected lungs, 98% accuracy for normal and COVID-19 infected lungs, 82% accuracy for normal + bacterial + viral infected lungs, and 98% accuracy for normal + pneumonia infected lungs. The DL models performed better than the ML models for binary and multiclass classification. The performance of these studied models was tried on other CXR image databases.</p><p><strong>Conclusion: </strong>The suggested network effectively detected COVID-19 and different types of pneumonia by using CXR imagery. This could help medical sciences for timely and accurate diagnoses of the cases through bioimaging technology and the use of high-end bioinformatics tools.</p>","PeriodicalId":19715,"journal":{"name":"Open Medicine","volume":"20 1","pages":"20241110"},"PeriodicalIF":1.7000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11806240/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1515/med-2024-1110","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
引用次数: 0
Abstract
Background: The highly infectious coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2, the seventh coronavirus. It is the longest pandemic in recorded history worldwide. Many countries are still reporting COVID-19 cases even in the fifth year of its emergence.
Objective: The performance of various machine learning (ML) and deep learning (DL) models was studied for image-based classification of the lungs infected with COVID-19, pneumonia (viral and bacterial), and normal cases from the chest X-rays (CXRs).
Methods: The K-nearest neighbour and logistics regression as the two ML models, and Visual Geometry Group-19, Vision transformer, and ConvMixer as the three DL models were included in the investigation to compare the brevity of the detection and classification of the cases.
Results: Among the investigated models, ConvMixer returned the best result in terms of accuracy, recall, precision, F1-score and area under the curve for both binary as well as multiclass classification. The pre-trained ConvMixer model outperformed the other four models in classifying. As per the performance observations, there was 97.1% accuracy for normal and COVID-19 + pneumonia-infected lungs, 98% accuracy for normal and COVID-19 infected lungs, 82% accuracy for normal + bacterial + viral infected lungs, and 98% accuracy for normal + pneumonia infected lungs. The DL models performed better than the ML models for binary and multiclass classification. The performance of these studied models was tried on other CXR image databases.
Conclusion: The suggested network effectively detected COVID-19 and different types of pneumonia by using CXR imagery. This could help medical sciences for timely and accurate diagnoses of the cases through bioimaging technology and the use of high-end bioinformatics tools.
期刊介绍:
Open Medicine is an open access journal that provides users with free, instant, and continued access to all content worldwide. The primary goal of the journal has always been a focus on maintaining the high quality of its published content. Its mission is to facilitate the exchange of ideas between medical science researchers from different countries. Papers connected to all fields of medicine and public health are welcomed. Open Medicine accepts submissions of research articles, reviews, case reports, letters to editor and book reviews.