A comparative analysis of the binary and multiclass classified chest X-ray images of pneumonia and COVID-19 with ML and DL models.

IF 1.7 4区 医学 Q2 MEDICINE, GENERAL & INTERNAL
Open Medicine Pub Date : 2025-02-04 eCollection Date: 2025-01-01 DOI:10.1515/med-2024-1110
Madhumita Pal, Ranjan K Mohapatra, Ashish K Sarangi, Alok Ranjan Sahu, Snehasish Mishra, Alok Patel, Sushil Kumar Bhoi, Ashraf Y Elnaggar, Islam H El Azab, Mohammed Alissa, Salah M El-Bahy
{"title":"A comparative analysis of the binary and multiclass classified chest X-ray images of pneumonia and COVID-19 with ML and DL models.","authors":"Madhumita Pal, Ranjan K Mohapatra, Ashish K Sarangi, Alok Ranjan Sahu, Snehasish Mishra, Alok Patel, Sushil Kumar Bhoi, Ashraf Y Elnaggar, Islam H El Azab, Mohammed Alissa, Salah M El-Bahy","doi":"10.1515/med-2024-1110","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The highly infectious coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2, the seventh coronavirus. It is the longest pandemic in recorded history worldwide. Many countries are still reporting COVID-19 cases even in the fifth year of its emergence.</p><p><strong>Objective: </strong>The performance of various machine learning (ML) and deep learning (DL) models was studied for image-based classification of the lungs infected with COVID-19, pneumonia (viral and bacterial), and normal cases from the chest X-rays (CXRs).</p><p><strong>Methods: </strong>The <i>K</i>-nearest neighbour and logistics regression as the two ML models, and Visual Geometry Group-19, Vision transformer, and ConvMixer as the three DL models were included in the investigation to compare the brevity of the detection and classification of the cases.</p><p><strong>Results: </strong>Among the investigated models, ConvMixer returned the best result in terms of accuracy, recall, precision, <i>F</i>1-score and area under the curve for both binary as well as multiclass classification. The pre-trained ConvMixer model outperformed the other four models in classifying. As per the performance observations, there was 97.1% accuracy for normal and COVID-19 + pneumonia-infected lungs, 98% accuracy for normal and COVID-19 infected lungs, 82% accuracy for normal + bacterial + viral infected lungs, and 98% accuracy for normal + pneumonia infected lungs. The DL models performed better than the ML models for binary and multiclass classification. The performance of these studied models was tried on other CXR image databases.</p><p><strong>Conclusion: </strong>The suggested network effectively detected COVID-19 and different types of pneumonia by using CXR imagery. This could help medical sciences for timely and accurate diagnoses of the cases through bioimaging technology and the use of high-end bioinformatics tools.</p>","PeriodicalId":19715,"journal":{"name":"Open Medicine","volume":"20 1","pages":"20241110"},"PeriodicalIF":1.7000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11806240/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1515/med-2024-1110","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
引用次数: 0

Abstract

Background: The highly infectious coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2, the seventh coronavirus. It is the longest pandemic in recorded history worldwide. Many countries are still reporting COVID-19 cases even in the fifth year of its emergence.

Objective: The performance of various machine learning (ML) and deep learning (DL) models was studied for image-based classification of the lungs infected with COVID-19, pneumonia (viral and bacterial), and normal cases from the chest X-rays (CXRs).

Methods: The K-nearest neighbour and logistics regression as the two ML models, and Visual Geometry Group-19, Vision transformer, and ConvMixer as the three DL models were included in the investigation to compare the brevity of the detection and classification of the cases.

Results: Among the investigated models, ConvMixer returned the best result in terms of accuracy, recall, precision, F1-score and area under the curve for both binary as well as multiclass classification. The pre-trained ConvMixer model outperformed the other four models in classifying. As per the performance observations, there was 97.1% accuracy for normal and COVID-19 + pneumonia-infected lungs, 98% accuracy for normal and COVID-19 infected lungs, 82% accuracy for normal + bacterial + viral infected lungs, and 98% accuracy for normal + pneumonia infected lungs. The DL models performed better than the ML models for binary and multiclass classification. The performance of these studied models was tried on other CXR image databases.

Conclusion: The suggested network effectively detected COVID-19 and different types of pneumonia by using CXR imagery. This could help medical sciences for timely and accurate diagnoses of the cases through bioimaging technology and the use of high-end bioinformatics tools.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Open Medicine
Open Medicine Medicine-General Medicine
CiteScore
3.00
自引率
0.00%
发文量
153
审稿时长
20 weeks
期刊介绍: Open Medicine is an open access journal that provides users with free, instant, and continued access to all content worldwide. The primary goal of the journal has always been a focus on maintaining the high quality of its published content. Its mission is to facilitate the exchange of ideas between medical science researchers from different countries. Papers connected to all fields of medicine and public health are welcomed. Open Medicine accepts submissions of research articles, reviews, case reports, letters to editor and book reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信