Reconfiguring Surface Acoustic Wave Microfluidics via In Situ Control of Elastic Wave Polarization.

IF 8.1 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Yu Gao, Thomas Voglhuber-Brunnmaier, Yuekang Li, Leyla Akh, Nicholas H Patino, Apresio Kefin Fajrial, Massimo Ruzzene, Bernhard Jakoby, Xiaoyun Ding
{"title":"Reconfiguring Surface Acoustic Wave Microfluidics via In Situ Control of Elastic Wave Polarization.","authors":"Yu Gao, Thomas Voglhuber-Brunnmaier, Yuekang Li, Leyla Akh, Nicholas H Patino, Apresio Kefin Fajrial, Massimo Ruzzene, Bernhard Jakoby, Xiaoyun Ding","doi":"10.1103/PhysRevLett.134.037002","DOIUrl":null,"url":null,"abstract":"<p><p>We demonstrate in situ control of the elastic wave polarization in a surface acoustic wave (SAW). It allows us to create highly reconfigurable SAW microfluidics that can be switched on demand between the acoustohydrodynamic (AHD) regime and electrohydrodynamic (EHD) regime for manipulating particles and cells. The control of wave polarization comes from our experimental and theoretical identification of an unexpected shear-horizontal (SH) wave mode in a conventional Rayleigh (R) wave design, which is stereotyped to excite only vertically polarized Rayleigh SAWs. The SH wave mode is predominantly horizontally polarized and can be selectively excited to propagate in the same direction as the Rayleigh SAW. Such a selective wave generation between the SH mode and R mode allows for reconfiguration between AHD and EHD regimes that leads to unprecedented colloidal patterns and assembly dynamics. Such a reconfiguration of the particle manipulation mechanism can be explained by the controllable competition or synergism between the coexisting acoustic and electric fields. Remarkably, in the EHD regime, a virtual zero-boundary electric quadrupole is created, and a novel colloidal diamond-shaped assembly is observed in this piezoelectric-quadrupole trap, which was rarely reported in acoustic or electric microfluidics. The presented in situ control of polarization revolutionizes our understanding of SAW and acoustofluidics, expands its potential by assuming the advantages of AHD and EHD on demand, and inspires new strategies in micro- and nanoscale manufacturing and manipulation, with applications beyond fundamental scientific interest.</p>","PeriodicalId":20069,"journal":{"name":"Physical review letters","volume":"134 3","pages":"037002"},"PeriodicalIF":8.1000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/PhysRevLett.134.037002","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We demonstrate in situ control of the elastic wave polarization in a surface acoustic wave (SAW). It allows us to create highly reconfigurable SAW microfluidics that can be switched on demand between the acoustohydrodynamic (AHD) regime and electrohydrodynamic (EHD) regime for manipulating particles and cells. The control of wave polarization comes from our experimental and theoretical identification of an unexpected shear-horizontal (SH) wave mode in a conventional Rayleigh (R) wave design, which is stereotyped to excite only vertically polarized Rayleigh SAWs. The SH wave mode is predominantly horizontally polarized and can be selectively excited to propagate in the same direction as the Rayleigh SAW. Such a selective wave generation between the SH mode and R mode allows for reconfiguration between AHD and EHD regimes that leads to unprecedented colloidal patterns and assembly dynamics. Such a reconfiguration of the particle manipulation mechanism can be explained by the controllable competition or synergism between the coexisting acoustic and electric fields. Remarkably, in the EHD regime, a virtual zero-boundary electric quadrupole is created, and a novel colloidal diamond-shaped assembly is observed in this piezoelectric-quadrupole trap, which was rarely reported in acoustic or electric microfluidics. The presented in situ control of polarization revolutionizes our understanding of SAW and acoustofluidics, expands its potential by assuming the advantages of AHD and EHD on demand, and inspires new strategies in micro- and nanoscale manufacturing and manipulation, with applications beyond fundamental scientific interest.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Physical review letters
Physical review letters 物理-物理:综合
CiteScore
16.50
自引率
7.00%
发文量
2673
审稿时长
2.2 months
期刊介绍: Physical review letters(PRL)covers the full range of applied, fundamental, and interdisciplinary physics research topics: General physics, including statistical and quantum mechanics and quantum information Gravitation, astrophysics, and cosmology Elementary particles and fields Nuclear physics Atomic, molecular, and optical physics Nonlinear dynamics, fluid dynamics, and classical optics Plasma and beam physics Condensed matter and materials physics Polymers, soft matter, biological, climate and interdisciplinary physics, including networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信