Genetic Mechanisms and Adaptive Benefits of Anthocyanin Red Stigmas in a Wind-Pollinated Tree.

IF 11 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Wei-Hao Wang, Susanne S Renner, Hao-Sheng Liu, Liu-Feng Dai, Cai-Jin Chen, Yi Zhang, Bo-Wen Zhang, Da-Yong Zhang, Wei-Ning Bai
{"title":"Genetic Mechanisms and Adaptive Benefits of Anthocyanin Red Stigmas in a Wind-Pollinated Tree.","authors":"Wei-Hao Wang, Susanne S Renner, Hao-Sheng Liu, Liu-Feng Dai, Cai-Jin Chen, Yi Zhang, Bo-Wen Zhang, Da-Yong Zhang, Wei-Ning Bai","doi":"10.1093/molbev/msaf040","DOIUrl":null,"url":null,"abstract":"<p><p>Anthocyanin accumulation in leaves or flowers mitigates photooxidation damage from reactive oxygen species (ROS) and functions in plant/animal interactions. Among the most conspicuously anthocyanin-accumulating tissues are stigmas, especially in wind-pollinated trees. In the walnut genus (Juglans), yellow stigmas are ancestral, but a few species have dark red stigmas. We have used a natural F1 hybrid resulting from crosses between yellow stigma and red stigma species to investigate the genetic basis of the red stigmas. We found that a Copia transposable element (TE) insertion in the ubiquitin-protein ligase gene MIEL1 suppresses its expression in stigmas through RNA-directed DNA methylation and has gone to fixation in red stigma species. A younger Gypsy TE insertion fully inhibits MIEL1 expression, but is not fixed, explaining the color segregation in hybrid populations. Based on reference genomes and whole-genome sequencing data representing 20 of the 22 species of Juglans, we traced the evolution of MIEL1, finding the insertions in all consistently red stigma species. Red stigmas had lower levels of ROS than yellow stigmas, and population genetic data reveal strong positive selection on the TE-bearing MIEL1 allele. In combination, these results suggest that anthocyanin-accumulating stigma tissues support pollen germination and growth by protecting cells from ROS.</p>","PeriodicalId":18730,"journal":{"name":"Molecular biology and evolution","volume":" ","pages":""},"PeriodicalIF":11.0000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11879928/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular biology and evolution","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/molbev/msaf040","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Anthocyanin accumulation in leaves or flowers mitigates photooxidation damage from reactive oxygen species (ROS) and functions in plant/animal interactions. Among the most conspicuously anthocyanin-accumulating tissues are stigmas, especially in wind-pollinated trees. In the walnut genus (Juglans), yellow stigmas are ancestral, but a few species have dark red stigmas. We have used a natural F1 hybrid resulting from crosses between yellow stigma and red stigma species to investigate the genetic basis of the red stigmas. We found that a Copia transposable element (TE) insertion in the ubiquitin-protein ligase gene MIEL1 suppresses its expression in stigmas through RNA-directed DNA methylation and has gone to fixation in red stigma species. A younger Gypsy TE insertion fully inhibits MIEL1 expression, but is not fixed, explaining the color segregation in hybrid populations. Based on reference genomes and whole-genome sequencing data representing 20 of the 22 species of Juglans, we traced the evolution of MIEL1, finding the insertions in all consistently red stigma species. Red stigmas had lower levels of ROS than yellow stigmas, and population genetic data reveal strong positive selection on the TE-bearing MIEL1 allele. In combination, these results suggest that anthocyanin-accumulating stigma tissues support pollen germination and growth by protecting cells from ROS.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular biology and evolution
Molecular biology and evolution 生物-进化生物学
CiteScore
19.70
自引率
3.70%
发文量
257
审稿时长
1 months
期刊介绍: Molecular Biology and Evolution Journal Overview: Publishes research at the interface of molecular (including genomics) and evolutionary biology Considers manuscripts containing patterns, processes, and predictions at all levels of organization: population, taxonomic, functional, and phenotypic Interested in fundamental discoveries, new and improved methods, resources, technologies, and theories advancing evolutionary research Publishes balanced reviews of recent developments in genome evolution and forward-looking perspectives suggesting future directions in molecular evolution applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信